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Abstract—Memristors are finding applications in memory,
logic, neuromorphic systems, and data security. To this end,
we leverage the non-linear behaviour of memristors to devise
a low overhead physical unclonable function using a memristive
chaos circuit in conjunction with a non-linear memristive
encoder. We demonstrate the effectiveness of this architecture
in Challenge-Response-Pair based authentication, and for its
physical uncloneability. This architecture is highly versatile
and can be implemented with a single encoder or a number
of encoders running in parallel, each one with its own merit,
for extending the sizes of CRPs. To demonstrate its effective-
ness, we subject the architecture to machine learning based
modelling attacks e.g. Logistic Regression, Support Vector
Machines, Random Forest, as well as Artificial Neural Network
classifiers. We found out that the proposed PUF architecture
provides better resistance to such attacks, even for smaller bit
sizes and at reduced overheads.

I. INTRODUCTION

A Physical Unclonable Function (PUF) is a promising
low overhead security primitive useful for a number of au-
thentication applications, e.g. in preventing integrated circuit
piracy, cloning, and counterfeiting [1]. A PUF produces dif-
ferent unique outputs for the same input, when implemented
on different devices. In Challenge-Response-Pair (CRP)
based authentications, PUFs implemented on different chips
produce unpredictable responses corresponding to the same
challenges. Memristors, owing to their unique properties,
are becoming popular in PUF designs [2]–[5]. A memristor
stands apart from other fundamental circuit elements because
of its non-volatility in the absence of a power supply. In this
paper, we exploit this property for non-linearly encoding data
and locking it to a particular device.

As size of the devices shrink, characteristics of memristors
are affected by process variations. These characteristics,
which are highly non-linear and pronounced, are funda-
mental behind its use as PUFs [2]–[5]. The main criticism
and drawback of most of the existing PUFs, such as delay
based arbiter PUFs, is that the mapping from challenges to
responses shows a certain degree of linearity, which complex
machine learning algorithms can figure out. For example,
for 64-bit arbiter PUFs machine learning can achieve 99%
prediction rate [6]. Additionally, for these architectures many
CRPs lack uniqueness. To mitigate these usually a large
number of challenge/response bits with many stages of
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Fig. 1: (a) Block diagram of the proposed architecture; (b)
Memristive chaos circuits [9].

iterative hardware, at the cost of significant overhead and
power consumption, is required for a proper PUF [5], [7].

In contrast, we propose a novel architecture that leverages
the non-linear behaviour of the memristors for realising
high performance low overhead PUFs. It is based on a low
overhead memristive chaos circuit in conjunction with a
non-linear memristive encoder. The idea is to use the chaos
circuits to non-linearly generate unique analogue values from
different digital challenges and then use a non-linear mem-
ristive encoder to non-linearly convert these analogue values
back to unique digital codes (responses), which requires
much lower overhead and provides better attack resistance.
Hence, the proposed architecture can be very useful in
applications such as chip tagging/identification as well as
for preventing unauthorised fabrications and authentication,
e.g. via CRPs [5], [7], [8].

II. PROPOSED ARCHITECTURE

Fig. 1a shows the block diagram of the proposed PUF
architecture. The general idea is to convert the digital
challenges to analogue signals, add non-linearity to it, and
then convert the result back to digital responses. Here, the
different chips are assumed to produce different responses
for the same challenges owing to process variability. We
achieve this with a low overhead memristive chaos circuit in
conjunction with a Memristive Non-Linear Encoder (MNE).
We show that, due to unpredictable non-linearity and process
variability, the proposed architecture provides unpredictable
CRPs as well as good PUF.978-1-7281-9457-8/20/$31.00 ©2020 IEEE



A. Chaos Circuit

A reproducible memristive chaos circuit [9] is used for
converting an n-bit digital challenge to a unique analogue
value. The original chaos circuit constitutes a linear resistor,
an inductor, two capacitors, and a nonlinear memristor.
However, the inductor is large in size and difficult to scale
and thus it is replaced by two op-amps [10] as shown by the
equivalent circuit in Fig. 1b.

The idea of adding non-linear memristive chaotic property
is to ‘pre-scramble’ the challenge, but in a reproducible way
as long as the initial conditions are satisfied. Any change in
the input alters the behaviour of the circuit completely and
this change can be accumulated by applying the challenge
bits in series. Hence, the chaotic analogue signal produced
by the circuit has much less predictable relationship with the
input challenges. This makes it much harder for a machine
to learn the co-relation between the inputs and the analogue
voltage and thus makes it difficult to mount a machine
learning based attacks on the CRPs.

B. Memristive Non-Linear Encoder

Once the challenges are converted to analogue voltages,
we use a low complexity MNE to encode the analogue
signals to digital responses. This exploits the non-linear
movement of a memristor’s barrier, which make it even
harder for CRP predictions. Blue line in Fig. 2 shows the
basic architecture.

A memristor can be programmed (tuned) by applying a
programming voltage Vprog and can be read by applying
a hold voltage Vhold. The amplitude of the programming
voltage Vprog and its pulse width Tprog determines the shifting
of the barrier within the memristor [11]. Let fenc be the
encoding frequency of the clock (clk) and Tenc = Tprog +
Thold = 1/ fenc be the clock cycle. Voltages Vprog and Vhold
are alternatively applied during Tprog and Thold respectively.
Vprog is adjusted to be sufficiently high so that VW appears
across the memristor even with the load RL. The memristor
is initialised to Roff and by repeatedly applying Vprog, voltage
Vb increases towards Va. During each Tprog, Vprog shifts the
barrier of the memristor from the Roff region towards the
Ron region by a small amount, but non-linearly, and during
the following Thold, Vb and Va are compared. The barrier of
the memristor can also be shifted from Ron to Roff except
the fact that the polarity of the memristor needs to be
switched. Meanwhile, an m-bit counter counts the number
of programming pulses. The programming pulses represent
the encoded value, which is non linear, corresponding to Va.
The control circuit disables the programming pulses when
Vb exceeds Va.

The counter, and hence the encoded value, can be of any
number of bits. For example, a 1-bit counter flips between
0 and 1 during the encoding process and provides a 1-bit
encoding of Va. This outcome depends on the non-linear
shifting of the barrier within the device. This flexibility
allows us to segment an n-bit response into k smaller bit
responses and then combine the results.

C. Proposed PUF Architecture
Inline with Fig. 1a, Fig. 2 shows the proposed architecture

for CRP based authentication. The architecture generates
unpredictably non-linear CRPs owing to the combined ef-
fects of the chaos circuit and the MNE. It also provides
physical unclonability by virtue of its sensitivity to process
and parametric variations. As revealed by our experimental
results, the CRPs depend heavily on the physical parameters
of a memristor such as its length, D. Any small variations
in these are amplified by the MNE mechanism and results
in wide variations in responses for the same challenges
(Fig. 3a).
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Fig. 2: Proposed architecture for CRP based authentication.

Fig. 3b shows the proposed PUF architecture with mul-
tiple MNEs placed in parallel. These paralleled MNEs
produce different m-bit responses for the same voltage (chal-
lenge) by virtue of process variability. Each m-bit response
is concatenated to generate a new unique k×m bit response.
Dividing a single m-bit response into k smaller instances can
be useful, e.g. when m is very large.

The proposed architecture also reduces the effects of quan-
tisation error and improves uniqueness. As shown in Fig. 3c,
due to quantisation error some analogue values (challenges)
produced by the chaos circuit are mapped to the same
encoded value (response) in a single chip. Concatenating
responses from different MNEs lowers this effect.

III. RESULTS AND DISCUSSIONS

For the experimental results, the memristors were coded
in Verilog-A based on the model and the parameters given
in [11]. The systems were designed and simulated in Ca-
dence Virtuoso. We assumed Vprog= 250mV, Vhold= 50mV,
Tprog= 2.5ns, RL = 1KΩ, Ron=500Ω, Roff=200KΩ, D=3nm,
Von=−0.2V and Voff=0.02V.

a) Non-linear Memristive Encoder: The MNE archi-
tecture presented by blue line in Fig. 2 inherently provides
non-linear encoding as shown in Fig. 3a. This figure also
shows that a small variation in the physical parameters of
memristor results in different analogue-to-digital transfer
characteristics. As we see the behaviour of the MNE is
non-linear throughout, i.e. it is non-linear for specific Vprog
or Tprog and also for their differences. The MNEs also
showed wide variations in responses for the same challenges
under process variations when used as a CRP generator for
authentication.
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Fig. 3: (a) Effects of varying process parameter D by 5%, while all other parameters are fixed; (b) Proposed PUF architecture
with multiple MNEs; (c) Effects of the quantisation error.

TABLE I: Hardware overhead comparison for memristor-
based PUFs.

PUF Architecture Ref. Ref. Ref. Ref. Proposed
[2] [3] [4] [12] Architecture

Challenge size (bits) n n n n n
Response size (bits) r r r r r = k×m

Memristors n× r n× r 2n 4n× r k+1
MOSFET switches – – – 4n× r –

MUXes(2:1) 3n+ r – 3n r –
Resistors – – 2n – k+5

Amplifiers r r – – 2
Inverters – – 2n 2n× r –

n-bit decoder – 1 – – –
Flip-flops – – – 2× r r
Capacitors – – – – 3

Comparator – – – – k

b) Hardware Overhead: Table I shows the hardware
overhead comparison for proposed PUF architecture and
existing memristor-based PUFs [2]–[4], [12]. Table I is
originally extracted from [12], which exclude the timing
and control circuit for all of the techniques. From the
results, the hardware requirement in [2]–[4], [12] are much
higher compared to the proposed PUF design. The proposed
architecture is also flexible in terms of hardware overhead
as the value of k and m can be set as per the requirement
of the specific design.

c) Performance: Various metrics to determine the qual-
ity of PUF have been proposed in [13]. Table II shows
the performance of the proposed architecture compared to
existing architectures [5], [7], [8].

Uniqueness: Uniqueness determines the ability of differ-
ent PUFs to produce unique responses to the same challenge.
It is defined as 2

k(k−1) ∑
k−1
i=1 ∑

k
j=i+1

HD(Ri,R j)
n × 100%, where

k is the total number of PUF instances and n represents
the total number of bits in the response of a PUF instance;
HD(Ri,R j) is the hamming distance between two bit-strings
Ri and R j. Ideally, the uniqueness should be 50%. For the
proposed PUF architecture, when tested with 1,000 different
PUF instances, it is 49.92%.

Uniformity: It is a measure of the distributions of 1s and
0s in an instance of a PUF. Even distribution ensures a
strong security key. Uniformity for Chip-i is calculated as
1
n ∑

n
l=1 ri,l×100%, where ri,l is the lth binary bit of an n-bit

response [13]. The ideal uniformity is 50%. The uniformity

of the proposed architecture, when tested with 64-bit 60,000
different CRPs, is 56.33%.

Bit Aliasing: It is a measure for the likelihood of different
chips producing similar response bits. The ideal value is
50%. For Chip-i, it is calculated as 1

k ∑
k
i=1 ri,l×100%, where

ri,l is the lth bit of an n-bit response and k is the total
number of PUF chips [13]. The Bit Aliasing for the proposed
architecture, when tested with 1,000 different PUFs, is 49%.

TABLE II: Performance comparison.

Uniqueness Uniformity Aliasing
Ref. [5] 50.3% 53.8% 49.2%
Ref. [7] 49.8 50.1% –
Ref. [8] 50% 50.69% 50%

Proposed PUF 49.92% 56.33% 49%

d) Modelling Attack Resistance: Most existing PUFs
are susceptible to machine learning based modelling at-
tacks [6]. Especially for delay based PUFs (e.g. Arbiter
PUFs), modelling attack is extremely successful. The CRPs
in the existing PUFs are either linearly separable or math-
ematically differentiable. In contrast, we show that our
PUF architecture is capable of offering higher resistance to
such attacks because of the non-linear stochastic properties
provided by chaos and MNE circuits.

The modelling attacks we applied in this paper are under
the environment of Python 3.6 with the packages Scikit-
Learn 0.19.0 and Keras 2.2.4. Logistic Regression (LR),
and Support Vector Machine (SVM) are the most widely
used techniques for the modelling attacks on PUFs. In our
case, to demonstrate the general machine learning attack
resistance of the proposed design, we not only use SVM
and LR, but also apply other techniques such as Decision
Tree (DT) and Random Forest (RT) classifiers. In SVM
attacks, we specifically chose Radial Basis Function (RBF)
kernel to fit our nonlinear property [7]. We also tested
attack resistance to Artificial Neural Network (ANN) based
classifiers. To solve the non-linear problem, we use Multi-
layer Perceptron (MLP) feed-forward network structure for
classification. ANN based classifiers have been claimed to
outperform traditional machine learning algorithms [8].

To improve the machine learning performance, in addition
to the CRPs we also considered the voltage Va (Fig. 2) as
an additional feature. However, in reality, unlike existing
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Fig. 4: Modelling attack results for different size of the
training set.

TABLE III: Modelling attack resistance comparisons.

Class. Ref. [5] Ref. [7] Ref. [8] Proposed PUF
Learner %Accuracy %Accuracy %Accuracy %Accuracy

LR 50 – – 53.06
SVM 65.67 79 – 49.81
DT – – – 50.65
RF – – – 49.43

ANN – – ≈50 53.4

iterative network based PUFs [5], [7], these types of features
are much harder to obtain because of the sequential nature
of the hardware and accessibility. Here, Va is dependent
on the previous voltage levels, which is much harder to
track. However, without this feature the accuracy of all the
classifiers drops below 50%.

All classifiers were trained with 60,000 CRPs. Fig. 4
presents the trends of accuracy, which randomly fluctuate
around 50% rather than generally increase as the training
set is extended. This indicates that the proposed PUF is able
to effectively resist modelling attacks. We also compare the
attack resistance of the proposed design with the existing
PUFs which are subjected to same machine learning attacks.
The results are summarised in Table III. In this table, the
training sets considered by [5], [7], and [8] are 5,000, 50,000,
and 38,000 respectively. The proposed design provides better
resistance to the attacks compared to [5], [7]. It is worth
mentioning that for the traditional arbiter PUFs, these attacks
can reach almost 99% accuracy. For the ANN classifier, the
accuracy of our technique is 53.4%. If we consider only the
CRPs, without additional features, the accuracy drops below
50%. This is an improvement over [8] also, which did not
seem to specify any additional feature for training.

To evaluate the effects of the MNE, we tested attack
resistance without it, i.e. with a Linear Encoder (LE). The
results appear in Table IV. Clearly, the accuracy are around
90% without the MNE, and drops to around 50% with the
MNE. We also show here the effects of using higher bit
counters and training with multi way classifiers. Clearly, the
accuracy is drastically reducing for both, but with the MNE
it is dropping further.

IV. CONCLUSIONS

In this paper we presented a novel concept on low
overhead and high performance PUF realisation based on

TABLE IV: Performance with and without MNE.

Classification
64-bit Challenge with different bit size response

Learner
(%Accuracy)

1-bit 2-bits 4-bits
LE MNE LE MNE LE MNE

SVM 94.3 49.81 62.6 26.26 23.1 10.02
LR 93.7 53.06 64.5 30.12 23.1 13.86
DT 86.1 50.65 52.8 25.30 14.2 7.37
RF 93.6 49.43 61.1 24.5 18 6.64

ANN 93.3 53.4 63.2 24.1 23.11 4.6

a non-linear decoding and encoding scheme. The scheme
was tested with a low overhead memristive chaos block as
the decoder in conjunction with versatile memristive non-
linear encoders. The proposed architecture is sequential in
nature and offers much lower overhead compared to existing
techniques and higher flexibility in terms of hardware re-
quirements. The combined non-linearity of the decoder and
encoder offers excellent resistance to modelling attacks. Our
results showed that the proposed architecture can outperform
existing ones. Owing to its versatility, non-linearity, physical
unclonability and lower overhead, we envisage that the
proposed architecture will be attractive for diverse security,
authentication, and trust applications.
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