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REVIEW 1 

Elevation gradients of lemur abundance emphasise the importance of Madagascar’s 2 

lowland rainforest for the conservation of endemic taxa 3 
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ABSTRACT 25 

1. Elevation gradients correlate with changes in several environmental conditions and are 26 

known to influence animal abundance. Animals in regions with a naturally limited extent of 27 

lowland rainforest are expected to have evolved adaptations to intermediate elevations that 28 

provided a stable environment during their evolution.  29 

2. Since the lowland rainforest of Madagascar has a limited extent and suffers from 30 

increasing anthropogenic pressure, it is essential to understand how well species tolerate 31 

intermediate and high elevations. In this study, we aim to quantify the relationship between 32 

lemur abundance and elevation in the eastern rainforest of Madagascar.  33 

3. We correlated abundance data on 26 lemur species (10 genera), including 492 records from 34 

26 studies, with elevation. We analysed the consistency of correlations across species with a 35 

meta-analytical approach. We assessed the relationship between species’ body mass and 36 

elevational gradients of abundance, and controlled for species’ elevational range and median 37 

elevation. We then ran generalised linear mixed models to determine whether encounter rates 38 

were influenced by elevation, body mass, plant productivity, and anthropogenic disturbance. 39 

4. Overall, the abundance of lemur species in Malagasy rainforests was negatively correlated 40 

with elevation, and species occupying broader elevational ranges showed stronger 41 

correlations. Body mass did not influence species’ tolerance of high elevations. Even though 42 

several lemur species showed tolerance to the elevation gradient, the few remaining large 43 

patches of lowland rainforests host lemur species at greater abundances than other sites. 44 

Abundance across species was negatively related to body mass, elevation and seasonality in 45 

plant productivity, and positively related to plant productivity and anthropogenic disturbance. 46 

5. Despite the ecological flexibility of many lemur species, the largest remnant patches of 47 

lowland rainforests host the highest levels of lemur abundance and are key to lemur 48 
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conservation. It is crucial to preserve this priority habitat both for biodiversity conservation 49 

and for our understanding of lemur adaptations. 50 

 51 

Keywords: altitude, lowland rainforest, Madagascar, meta-analysis, primate 52 

 53 

INTRODUCTION 54 

The study of elevation gradients in relation to biodiversity patterns has received renewed 55 

interest in ecology, biogeography, and climate change research (Lomolino 2001, Körner 56 

2007, McCain 2007, Malhi et al. 2010). High-elevation tropical ecosystems are of particular 57 

interest, since they may have represented essential refugia during drier periods in the tropics 58 

(Wilmé et al. 2006, Colwell et al. 2008, Malhi et al. 2010). Studying the effects of elevational 59 

gradients on animal distribution and populations can unveil species’ niche tolerance and help 60 

us to understand their abilities to cope with environmental changes (Körner 2007). Many 61 

studies have been focused on species’ diversity patterns along elevational gradients (e.g. 62 

Brown 2001, Heaney 2001, Lomolino 2001, Rahbek 2005, McCain 2007), while only few 63 

comparative studies have explored patterns of abundance in relation to elevation (e.g. Silva et 64 

al. 2001, Bateman et al. 2010). This relationship needs further investigation, since abundance 65 

is related to extinction risk, and understanding geographic patterns of animal abundance is 66 

key to informing conservation strategies (Brown et al. 1995, Sanderson 2006). Patterns of 67 

abundance are mainly the result of interactions between species’ biological traits (e.g. those 68 

related to energetics), intra- and inter-specific interactions (e.g. territoriality and competition, 69 

respectively), environmental factors (e.g. resource availability and weather), and 70 

anthropogenic disturbance (Silva et al. 1997, Lomolino 2001, Benítez-López et al. 2017, 71 

Novosolov et al. 2017, Santini et al. 2018). Among species-specific characteristics, body 72 

mass and diet have been identified as major drivers of abundance in terrestrial vertebrates 73 
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(Silva et al. 1997, Santini et al. 2018), with large species and those at higher trophic levels 74 

living at lower abundance due to their higher energetic requirements and lower resource 75 

availability (Blackburn et al. 1993, Silva et al. 1997, Santini et al. 2018).  76 

High elevation habitats tend to be more isolated than low elevations, and therefore 77 

generally suffer lower anthropogenic disturbance (Lomolino 2001). Furthermore, several 78 

environmental conditions are associated with elevational gradients (Brown 2001, Lomolino 79 

2001, Körner, 2007, McCain 2007). Ambient temperature, atmospheric pressure and partial 80 

pressure of biologically important gases (e.g. oxygen and carbon dioxide) gradually decrease 81 

with an increase in elevation (Brown 2001, Körner 2007). Other environmental conditions, 82 

such as precipitation and plant productivity, do not follow a specific elevation trend but vary 83 

in different regions (Brown 2001, Körner 2007). In the tropics, optimal conditions for plant 84 

productivity and precipitation generally reach their maximum at intermediate elevations 85 

(around 800-1000 m above sea level - a.s.l.; Körner 2007, Propastin 2011, but the elevation 86 

varies among regions, e.g. it is 1500 m a.s.l. in the Philippines; Heaney 2001). Therefore, 87 

tropical species are usually expected to reach their peak abundance at intermediate elevations 88 

(Lomolino 2001).  89 

 Madagascar is a major hotspot of biodiversity and endemic species (Myers et al. 90 

2000), many of which are now threatened with extinction (Schwitzer et al. 2014). Around 91 

50% of Madagascar’s eastern rainforests have been lost since the 1950s. Deforestation has 92 

increased rapidly in recent decades (Vieilledent et al. 2018), and lowland rainforests are 93 

particularly affected (Scales 2014). The lowland rainforest has a naturally limited extent in 94 

Madagascar since large portions of the eastern floodplains drifted away as a consequence of 95 

the break-up of the Indo-Madagascar subcontinent between 90 and 80 million years ago 96 

(Krause 2003, Wells 2003). Thus, lemurs have been hypothesised to have evolved 97 

adaptations to cope with intermediate elevations that represented a more stable environment 98 
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and a larger expanse of forest than lowland rainforests during the Pleistocene (Messmer et al. 99 

2000, Goodman & Ganzhorn 2004). In support of this hypothesis, the average intermediate 100 

elevation point for lemur species diversity (around 900 m a.s.l.) is higher than that for 101 

primates outside Madagascar (around 400 m a.s.l.; Goodman & Ganzhorn 2004, Lehman 102 

2014). The large data set accumulated over the last decade on lemur abundance and 103 

distribution at rainforest sites and the easy access to contextual ecological data offer the 104 

opportunity to explore this hypothesis with more robust analyses. The eastern rainforest in 105 

Madagascar occupies a continuum from low to high elevations, and several lemur species 106 

occur over the entire elevational range while others are restricted to narrow geographic 107 

ranges (Goodman & Ganzhorn 2004, Wilmé et al. 2006). Considering the reduced area of 108 

lowland rainforest left on the island (Schwitzer et al. 2014), identifying the lemur species that 109 

have high abundance in lowland rainforest is imperative both for their conservation and for 110 

our understanding of their adaptations.  111 

 In this study, we aimed to quantify responses of lemur abundance to elevational 112 

gradients in the eastern rainforests of Madagascar. We considered different threats and 113 

constraints to make our predictions: surface effect and plant productivity for intermediate 114 

elevations, metabolic effects for small lemur species, and human impact for large lemur 115 

species. Considering that the optimal conditions for plant productivity usually occur at 116 

intermediate elevations in the tropics and lemur diversity is known to be higher at 117 

intermediate elevations, we hypothesised that the maxima of population abundance for most 118 

lemur species also occur at intermediate elevations (600-1200 m a.s.l.; Lehman 2014). We 119 

also hypothesised that small lemur species would show their maxima of abundance in 120 

lowland rainforests, since the ratio between energy expenditure and nutrient intake is 121 

disadvantageous for them at high elevations due to the increased costs of thermoregulation 122 

and locomotion in cool and harsh habitats (Caldecott 1980). Conversely, larger species, 123 
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generally more threatened by anthropogenic activities, may show their maxima of abundance 124 

at high elevations which are less accessible to humans (Lomolino 2001, Körner 2007).  125 

To test these hypotheses, we determined the effect sizes of the correlation coefficients 126 

between species encounter rates (a proxy of abundance) and elevation. This determination 127 

was achieved via a meta-analysis to identify the overall effect across all species and genera, 128 

and how these relationships are influenced by body mass. To investigate in more depth 129 

whether the species reached a peak of abundance at intermediate elevations, and test the 130 

influence of body mass, plant productivity and its seasonality, and anthropogenic disturbance, 131 

we also ran a linear model with both linear and quadratic terms. Specifically, we predicted:  132 

1) No monotonic relationship between abundance and elevation for the lemur species 133 

that occur over the entire elevational range, since the best conditions for their survival are 134 

expected to be at intermediate elevations.  135 

2) A positive effect of body mass on the correlation coefficient between abundance 136 

and elevation, reflecting the expectation that larger species with higher volume/surface ratios 137 

cope better with low temperatures due to the increase in heat conservation.  138 

3) An effect of median elevation and elevational range on the effect sizes, because the 139 

relationship between elevation and abundance can be influenced by the elevational 140 

distribution of the species. In particular, species occupying broader elevational ranges were 141 

expected to show a weaker relationship between elevation and abundance than species 142 

showing limited elevational variation.  143 

4) A positive influence of plant productivity; a negative influence of body mass, 144 

seasonality in plant productivity, and anthropogenic disturbance. 145 

 146 

METHODS 147 

Data collection 148 
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We collected population abundance estimates from the literature (including peer-reviewed 149 

and grey literature) for lemur species inhabiting the eastern rainforest of Madagascar. We 150 

excluded the littoral forests on sandy soil, since these habitats differ from rainforests (Bollen 151 

& Donati 2006). We used Google Scholar and Web of Science as search engines with the 152 

following research terms: abundance OR encounter rate OR density, AND lemur OR primate 153 

AND Madagascar, AND rainforest. We then excluded rainforest from the search in case any 154 

publications on lemur abundance in rainforests had been missed. We then inspected the 155 

papers and retained those that contained relevant data. We also searched other sources such 156 

as dissertations, book chapters, the International Union for Conservation of Nature’s Species 157 

Survival Commission Primate Specialist Group newsletter (Lemur News), and the Fieldiana 158 

Zoology series (that included a large dataset on lemur encounter rates at different elevations).  159 

We included a total of 26 publications in the meta-analysis. We used encounter rates 160 

(observed individuals per transect length) and not density estimates (estimated individuals per 161 

area) for analysis, since the former were more frequent in the literature. We excluded 162 

Daubentonia madagascariensis from the analysis since this lemur is very difficult to detect 163 

with line transects, and encounter rates are likely to be underestimated. Using the geographic 164 

coordinates of the 26 studies, we extracted average values for the Normalised Difference 165 

Vegetation Index (NDVI; proxy of plant productivity), the seasonality in plant productivity 166 

(NDVIsd), and the Human Influence Index (HII; proxy of anthropogenic disturbance; Venter 167 

et al. 2016). NDVI variables were calculated starting from monthly layers between 1990 and 168 

2015 with a resolution of 0.1 degree (~11 km) downloaded from 169 

https://neo.sci.gsfc.nasa.gov/. HII is a composite variable with a resolution of 30 arc-seconds 170 

(~1km) that integrates human population density, human land use and infrastructure, and 171 

human access.  172 

 173 

https://neo.sci.gsfc.nasa.gov/
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Data analysis  174 

We estimated the relationship between encounter rate and elevation for each lemur species 175 

using Spearman rank correlations. We transformed correlation coefficients to Fisher’s z 176 

scores using the correlation sample size to obtain the effect size z [1] and variance Vz [2] for 177 

each correlation:  178 

𝑧 = 0.5 ×  ln (
1+𝑟

1−𝑟
)  [1] 179 

𝑉𝑧 =
1

𝑛−3
 [2] 180 

where r is the correlation coefficient and n is the sample size. To estimate the overall trend 181 

and agreement across species, we performed a meta-analysis on the z scores and their 182 

variance (Borenstein et al. 2009). Correlations with n < 5 were excluded from the analysis as 183 

they do not allow the estimation of variance. We ran a mixed-effect meta-analysis on the 184 

transformed effect size values and the associated variance to calculate a summary effect size, 185 

where species were treated as random effects. We tested the residual heterogeneity using the 186 

Q-statistic, where a significant Q test indicates that a significant amount of variability exists 187 

between the effect sizes. Then, to estimate the summary effect size per genus, we repeated the 188 

same meta-analysis including genera as fixed effects and removing the model’s intercept 189 

(Schwarzer et al. 2015). We tested the difference between genera with the Tukey test. Finally, 190 

to test whether species body mass, the elevational range, and the median elevation affected 191 

the relationship between abundance and elevation, we used these three variables as 192 

moderators (covariates) in three meta-regressions. Body masses for all species in our dataset 193 

were collected from MADA (the Malagasy animal trait data archive) and were log10-194 

transformed for the meta-regression (Razafindratsima et al. 2018). We tested the overall 195 

effect of fixed effects and moderators using the omnibus test. A significant omnibus test 196 

indicated that fixed effects and moderators contributed to explaining a significant part of the 197 

residual variance in the effect sizes. We used an alpha level of 0.05 to test significance. We 198 
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also tested for phylogenetic signal in the residuals of the meta-analysis using Pagel’s Lambda 199 

test (Freckleton et al. 2002) and the phylogeny from Herrera and Davalos (2016), and we did 200 

not find an effect (Lambda=6.611e-05; p=1.000). The analysis was done using the ‘metafor’ 201 

package (Viechtbauer 2010) in R v. 3. 3.2 (R Core Team 2016).  202 

 To test whether lemur abundance and elevation had a quadratic relationship, we ran a 203 

Generalised Linear Mixed Model with a Poisson family. Firstly, we multiplied each 204 

encounter rate with the transect length to obtain the observation counts as response variable, 205 

and then we used transect length (log10) as an offset in the analysis (Benítez-López et al. 206 

2017). We included body mass (log10), elevation (log10), and NDVI, NDVIsd, and HII (log10) 207 

as fixed effects in the model, using both linear and quadratic effects. We used nested random 208 

effects with Family, Genus and Species levels to allow for different intercepts due to 209 

taxonomic-specific encounter rates. We then ran a full model selection and selected the best 210 

model based on the Akaike information criterion (Appendix S1). We tested for phylogenetic 211 

signal in the residuals of the model using Pagel’s Lambda and found no significant effect 212 

(Lambda=0.280; p=0.214). Since the model including HII detected an effect that seemed 213 

likely to be spurious, we ran a second model without HII and considered this model for 214 

spatial predictions. As in the first model, we did not find a phylogenetic signal in this second 215 

model (Lambda=0.295; p=0.131). We predicted from the model only within a buffer of 0.5 216 

degrees from our observations and using the digital elevation model in Robinson et al. 217 

(2014).  218 

 219 

RESULTS 220 

In total, we included 492 abundance data-points from 26 lemur species (10 genera) 221 

distributed throughout the extent of Madagascar’s eastern rainforest in the meta-analysis 222 

(Appendix S2, Figure 1, Table 1). Overall, the abundance of lemur species in rainforests was 223 
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negatively correlated with elevation, but a significant amount of residual heterogeneity 224 

existed between effect sizes, indicating a substantial variability between species (Figure 2, 225 

Table 2). Only a limited number of species showed significant correlation coefficients 226 

(Figure 2) and peaks of abundance at low elevations (Appendix S3). For the species Avahi 227 

meridionalis, Avahi laniger, Eulemur albifrons, Eulemur collaris, Lepilemur fleuretae, and 228 

Microcebus tanosi a significant negative correlation existed between abundance and 229 

elevation, while for Lepilemur microdon and Propithecus candidus there was a significant 230 

positive correlation (Figure 2). The meta-analysis using genera as fixed effects did not detect 231 

any significant correlation coefficients between abundance and elevation (Figure 3, Table 2). 232 

Similarly, the Tukey post-hoc test did not detect any significant difference between 233 

correlation coefficients per genus (Appendix S4). We found that species’ body sizes were not 234 

significantly related to the correlation coefficients obtained via the meta-analysis (Appendix 235 

S5, Table 2). The correlation coefficients between lemur abundance and elevation were 236 

negatively related to the species’ elevational range (Appendix S5, Table 2) and positively 237 

related to the species’ median elevation (Appendix S5, Table 2).  238 

The selected mixed effect model estimating the trend across species also showed a 239 

negative relationship between lemur encounter rates and elevation (Appendix S6, Figure 4). 240 

Furthermore, encounter rates were negatively related to species’ body mass, positively related 241 

to NDVI and negatively related to NDVIsd (Appendix S7). When HII was included in the 242 

model, the relationship between lemur abundance and the other variables in the model 243 

remained the same, and HII was positively related to lemur abundance (Figure 4). We only 244 

report the spatial predictions for the model without HII, since the predictions based on the 245 

model with HII are likely to reflect a spurious effect (Appendix S8). The model predicted the 246 

highest lemur abundances to occur in the lowland rainforests of Makira-Masoala, 247 

Tsitongambarika, and in forest fragments at intermediate latitudes (Figure 5). We also tested 248 
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the relationship between elevation and NDVI; it is described by a loess curve that peaks at 249 

low elevation (Appendix S9).   250 

 251 

DISCUSSION 252 

Elevation was significantly related to the abundance of lemurs. Within species, encounter 253 

rates were negatively correlated with elevation, and the average encounter rate for all species 254 

also decreased with increasing elevation. While we expected lemurs to reach their maxima of 255 

abundance at intermediate elevations, lowland rainforests appear to host higher lemur 256 

abundance than habitats at intermediate elevations. Our prediction was based on the 257 

observation that plant production should reach its maximum at intermediate elevation, where 258 

optimal values of mean temperature, around 20°C, and annual global radiation, around 6800 259 

MJ/m2, are expected in rainforests (White et al. 2000, Propastin 2011). Given the latitudinal 260 

extent of the eastern rainforest of Madagascar (from 14°10' to 24°57' S), the elevations at 261 

which conditions are optimal for plant productivity are likely to show large variation. An 262 

average temperature of 20°C can be found, for example, at an elevation of around 600 m a.s.l. 263 

in the Andohahela National Park (24°-25° S), and at around 950 m a.s.l. in the Marojejy 264 

National Park (14°-15° S; Karger et al. 2017a, b). In fact, plant productivity in our dataset is 265 

higher at low elevations (Appendix S9) and this figure is in accordance with the finding that 266 

the highest lemur abundance is found in lowland rainforests. 267 

Our results indicate that the remnant lowland rainforests that have a low habitat 268 

disturbance host lemur species at higher abundances than other sites. For example, most of 269 

the lemur species (Avahi meridionalis, Eulemur collaris, Lepilemur fleuretae, and 270 

Microcebus tanosi) inhabiting one of the largest areas of lowland rainforest, the 271 

Tsitongambarika Protected Area in south-eastern Madagascar, showed higher abundances at 272 

low elevations. The other species that showed higher abundance at low elevations, Eulemur 273 
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albifrons, also inhabits a large area of undisturbed lowland rainforests in north-eastern 274 

Madagascar, the Makira Protected Area. This species of Eulemur is also present at high 275 

densities in the other large area of lowland rainforest in Madagascar, the Masoala National 276 

Park (148 individuals/km2; Sterling & Rakotoarison 1998). Among nocturnal species, Avahi 277 

laniger reached peak abundance in the lowland rainforest fragments of Antsahanadraitry, 278 

located at intermediate latitudes, and at Manompana, located in the north-east (Appendix S2).  279 

Small fragments of lowland rainforests are of great value for conservation (Turner & 280 

Corlett 1996). Our results support this, and indicate that remnant lowland rainforests with low 281 

habitat disturbance may contain abundant lemurs. Nevertheless, lemur species that have their 282 

maxima of abundance in lowland rainforests may be particularly vulnerable to habitat 283 

degradation, since they are adapted to more stable ecological conditions (Green & Sussman 284 

1990, Turner 1996, Myers et al. 2000, Gibson et al. 2011). For example, Sharma et al. (2014) 285 

found that primate specialists of lowland rainforests are reduced in abundance or extirpated in 286 

small fragments, while generalist species are more abundant there as a consequence of their 287 

ability to adapt to different environments. However, the tolerance of species to human 288 

disturbance may, in fact, vary considerably (Ewers & Didham 2006). Several lemur species 289 

are known to tolerate some levels of habitat degradation via shifts in activity patterns and 290 

dietary choices (Irwin et al. 2010, Donati et al. 2016, Sato et al. 2016). This tolerance may 291 

explain why we found a positive relationship between abundance and HII. Also, low levels of 292 

habitat disturbance may provide benefits, such as high food availability and higher food 293 

nutritional content (Ganzhorn 1995). Some species actually benefit from modified habitats, as 294 

previously reported in lemurs (e.g. Herrera et al. 2011, Eppley et al. 2017), in other primates 295 

(e.g. Zarate et al. 2014, Nekaris et al. 2017), and in animal species in general (Bhagwat et al. 296 

2008).    297 
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 Most lemur species are able to occupy the entire elevation gradient that, at least in the 298 

tropics, is strictly associated with a temperature gradient (Malhi et al. 2010) and with other 299 

environmental variables such as plant productivity. This tolerance to variation in elevation 300 

can be explained by the fact that lemurs exhibit several behavioural and physiological 301 

adaptations to cope with low temperatures and lean periods. For example, some cheirogaleids 302 

of the genera Cheirogaleus and Microcebus enter prolonged periods of torpor or hibernation 303 

during the cold, dry season when resource availability is low (Dausmann et al. 2009). These 304 

physiological responses to cold and harsh environments are exceptional in the tropics and are 305 

rarely shown in other tropical taxa (McKechnie & Mzilikazi 2011, Ruf & Geiser 2015). 306 

Larger lemur species cope with low temperatures by sun-basking (e.g. Varecia; Vasey 2002) 307 

or huddling in groups (Eulemur; Donati et al. 2011; Hapalemur Eppley et al. 2017). Huddling 308 

is a common strategy used by social mammals and birds to reduce energy expenditure 309 

(Gilbert et al. 2010). Other proposed adaptations to the harsh Malagasy environment include 310 

low basal metabolic rate (Wright 1999) and other flexible behaviours related to the energy 311 

minimiser strategy (Donati & Borgognini-Tarli 2006, Norscia et al. 2012, Campera et al. 312 

2014). These adaptations allow lemurs to be more taxonomically diverse throughout a wider 313 

range of elevations than primates on other continents (Goodman & Ganzhorn 2004). 314 

 The only lemur species that was most abundant at high elevations was Propithecus 315 

candidus. This finding is in line with previous studies indicating that this species can inhabit 316 

several types of high-elevation habitats, including sclerophyllous forests and low ericoid 317 

bushes (Patel 2014). Propithecus candidus is also known for its thick pelage that may 318 

represent an adaptation for cold climates at high elevations (Lehman et al. 2005). This species 319 

can also be found at low elevations (235 m a.s.l.) in the Makira National Park at very low 320 

densities, although abundance has not been estimated (Patel & Andrianandrasana 2008). The 321 

highest abundance of Propithecus candidus was recorded in the Marojejy National Park, 322 
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which represents a priority conservation site for this Critically Endangered lemur (Patel 323 

2014).  324 

We predicted a negative relationship between body mass and tolerance of high 325 

elevations, reflecting the ability of large animals to cope with cold environments (Blackburn 326 

et al. 1999). Yet, we found no significant relationship, suggesting that body mass was not an 327 

important factor explaining the elevation gradients of lemur abundance in the eastern 328 

rainforest. For example, the genus Microcebus, which includes the smallest lemurs in 329 

Madagascar ranging from 30 to 70 g in weight (Mittermeier et al. 2010), did not show higher 330 

abundances at low elevations. Only the abundance of Microcebus tanosi was significantly 331 

negatively related to elevation. The negative correlation coefficient between elevation and 332 

abundance was stronger for species present over a large elevation range, including lowland 333 

rainforests (Appendix S5). This finding contradicts our hypotheses, since the best conditions 334 

were expected at intermediate elevations (around 900 m a.s.l.) for most species. These results 335 

may be due to the fact that encounter rates were only available in two large portions of 336 

lowland rainforest, the Tsitongambarika Forest in the south-east and the Makira Forest in the 337 

north-east of Madagascar. Most of the lowland rainforests at intermediate latitudes have been 338 

cleared or reduced to small fragments where lemurs have been largely extirpated (Green & 339 

Sussman 1990, Vieilledent et al. 2018). Few remaining lowland forest fragments in central 340 

Madagascar can support populations of large lemurs (Ganzhorn et al. 2001), and even in 341 

larger fragments there has been an increase in human impacts. As a result, most of the 342 

encounter rates are from sites above 450 m a.s.l. We cannot exclude the possibility that some 343 

species have a larger elevational range not reflected by data on abundance in the literature. 344 

Nevertheless, the data considered for this analysis encompass all the elevation strata and we 345 

consider them representative for the eastern rainforest. 346 
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It is likely that the current distribution of many extant lemurs does not reflect their 347 

niche tolerance, but it is rather limited to areas of low anthropogenic impact where they were 348 

able to persist. A reduction of the elevational range of occurrence may have reduced the 349 

strength of the abundance – elevation relationship, thus masking a stronger dependence of 350 

species on low-elevation habitats. Indeed, the distortion of natural macroecological pattern is 351 

a common phenomenon that can limit our understanding of causal relationships in nature 352 

(Varela et al. 2009, Di Marco & Santini 2015, Santini et al. 2017). Other factors (e.g. plant 353 

productivity, competition; Herrera et al. 2018, Santini et al. 2018) may have contributed to 354 

lemur abundance patterns, although understanding the complexity of these interactions was 355 

beyond the scope of this study. 356 

 Although lemur species are well-known for their ecological, physiological, and 357 

behavioural flexibility, we found that their abundance was generally higher at lower 358 

elevations. Given the limited extent of undisturbed lowland rainforests in Madagascar, it is 359 

pivotal to promote conservation measures to maintain this habitat that hosts high abundances 360 

of several lemur species (Kremen et al. 1999, Campera et al. 2017). Rapid habitat degradation 361 

is occurring elsewhere in lowland rainforests (Myers et al. 2000, Gibson et al. 2011), so a 362 

similar analysis could be extended to other regions of the world where endemic taxa occur at 363 

different elevations, to determine their ability to occupy elevation gradients. Our results 364 

suggest that the lowland rainforest at intermediate latitudes in Madagascar may have 365 

contained large populations of lemurs, and that some of the most suitable areas for 366 

conservation may have already disappeared. Although there are no lemur species that are 367 

exclusively found in lowland forests and thus, strictly speaking, lemurs may be less 368 

vulnerable than other taxa to the disappearance of this habitat, losing this environment is not 369 

only important for conservation reasons. The eastern rainforest of Madagascar represents a 370 

continuum from low to high elevations, and the ability of the lemurs to use this elevational 371 



16 
 

range has been hypothesised to explain the macroevolution of this group (Goodman & 372 

Ganzhorn 2004, Wilmé et al. 2006). The vanishing of the lowland habitats will thus hamper 373 

forever our ability to understand fully the adaptations and flexibility of this extraordinary 374 

group of primates.   375 
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Table 1: Number of study locations (N; 492 in total), body mass (g), and expected and 606 

observed elevation range (m a.s.l.) for each of the 26 lemur species included in the meta-607 

analysis. The data are derived from 26 publications. The expected elevation range includes all 608 

the locations in which the species is expected to be found based on species accounts, 609 

including sites where it was not encountered during transects, while the observed elevation 610 

range includes only the locations where the species was encountered. Body mass was 611 

retrieved from Razafindratsima et al. (2018), apart from Microcebus tanosi which was 612 

retrieved from Rasoloarison et al.  (2013). 613 

 614 

Species N Body 
mass (g) 

Elevation range 
(expected;  
m a.s.l.) 

Elevation range 
(observed;  
m a.s.l.) 

Avahi laniger 15 1180 210–1550 210–1260 
Avahi meridionalis 10 1213 178–1875 178–1500 
Avahi peyrierasi 34 1034 180–1625 180–1625 
Cheirogaleus crossleyi 19 292 638–1262 638–1262 
Cheirogaleus major 24 468 178–1625 178–1625 
Eulemur albifrons 11 1896 275–1875 275–1260 
Eulemur albocollaris 6 2250 67–1625 67–1210 
Eulemur collaris 13 2180 125–1875 125–1875 
Eulemur fulvus 6 1633 905–1224 905–1224 
Eulemur rubriventer 57 1978 180–1875 180–1625 
Eulemur rufifrons 40 2151 180–1625 180–1625 
Hapalemur aureus 6 1580 720–1625 810–1625 
Hapalemur griseus 37 813 638–1283 638–1283 
Hapalemur meridionalis 16 855 178–1875 178–1625 
Hapalemur occidentalis 11 847 450–1875 450–1625 
Indri indri 12 6593 500–1550 500–1224 
Lepilemur fleuretae 9 890 178–1875 178–440 
Lepilemur microdon 31 1105 638–1625 720–1625 
Lepilemur seali 10 952 450–1625 520–1625 
Microcebus mittermeieri 7 45 450–1625 450–1625 
Microcebus rufus 33 44 638–1625 638–1625 
Microcebus tanosi 11 52 178–1875 178–1875 
Prolemur simus 8 2395 180–1625 180–1224 
Propithecus candidus 10 5270 450–1875 520–1875 
Propithecus edwardsi 37 5686 638–1625 638–1262 
Varecia variegata 19 3524 180–1224 180–1224 
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Table 2. Results of the intercept-only meta-analysis, the meta-analysis using genera as fixed 615 

effects and the three metaregressions with body mass, median elevation and elevational 616 

range. SE = standard error; QE = statistic for the test of residual heterogeneity; QM= test 617 

statistic for the omnibus test of coefficients; P-values: * = p <0.05. 618 

Model Term Estimate (SE) QE QM 

Intercept-only Intercept -0.238 (0.010) * 76.426 *  

Genus as Fixed effects Avahi -0.423 (0.339) 64.945 * 7.215 

 Cheirogaleus -0.217 (0.399)   

 Eulemur -0.460 (0.253)   

 Hapalemur 0.013 (0.307)   

 Indri -0.389 (0.612)   

 Lepilemur -0.135 (0.351)   

 Microcebus -0.365 (0.356)   

 Prolemur -0.384 (0.681)   

 Propithecus 0.143 (0.413)   

 Varecia -0.066 (0.571)   

Body mass metaregression Intercept -0.308 (0.236) 76.669 * 0.138 

 Body mass 0.002 (0.006)   
Median elevation 
metaregression Intercept -1.765 (0.488) *** 59.087 10.215 ** 

 Median elevation 0.150 e-2 (0.047 e-2) **   
Elevational range 
metaregression Intercept 0.455 (0.341) 70.192 * 4.447 * 

 Elevational range -0.053 e-2 (0.025 e-2) *   

 619 
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Figure 1: Map of Madagascar, showing the ?? sites included in the meta-analysis of the 620 

relationship between lemur encounter rate and elevation in the eastern rainforest of 621 

Madagascar.  622 

 623 

Figure 2: Forest plot of effect sizes (Fisher’s Z) for abundance in relation to elevation for 624 

each of the 26 lemur species and in summary (bottom bar), with 95% confidence intervals 625 

(horizontal bars). Overall, lemur abundance is negatively related to elevation. The size of the 626 

square for each species is proportional to the sample size (ranging from 6 to 57 samples for 627 

each species). The dashed line indicates zero (no relationship between abundance and 628 

elevation). 629 

 630 

Figure 3: Forest plot of the effect sizes (Fisher’s Z) for abundance in relation to elevation for 631 

each lemur genus estimated as fixed effects in the meta-analysis, with 95% confidence 632 

intervals (horizontal bars). The dashed line indicates zero (no relationship between abundance 633 

and elevation). 634 

 635 

Figure 4: Results of the Generalised Linear Mixed Model with encounter rates (~abundance; 636 

ΔER) of lemurs in Madagascar’s eastern rainforest as the dependent variable. BM: Body 637 

Mass; El: Elevation; NDVI: Normalised Difference Vegetation Index (proxy of plant 638 

productivity); NDVIsd: proxy of seasonality in plant productivity; HII: Human Influence 639 

Index (proxy of anthropogenic disturbance). 640 

 641 

Figure 5: Model predictions for encounter rates (?????) of lemurs in Madagascar’s eastern 642 

rainforest from the Generalised Linear Mixed Model. 643 

. 644 
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SUPPORTING INFORMATION. 

Additional supporting information may be found in the online version of this article at the 

publisher’s website. 

Appendix S1. Model selection for the Generalised Linear Mixed Models with encounter 

rates of lemurs in Madagascar’s eastern rainforest as the dependent variable. 

Appendix S2. List of data on the abundance of lemur species in the eastern rainforest in 

Madagascar included in the meta-analysis. 

Appendix S3. Mean lemur abundance (encounter rates or densities) in elevation categories 

(every 400 m a.s.l.). 

Appendix S4. Results of the Tukey post-hoc tests between lemur genera included in the 

meta-analysis.  

Appendix S5: Metaregression between the correlation coefficient of the relationship between 

encounter rate and elevation and species body mass, elevational range, and median elevation. 

Appendix S6: Model output of the Generalised Linear Mixed Models with encounter rates of 

lemurs in Madagascar’s eastern rainforest as the dependent variable. 

Appendix S7: Results of the Generalised Linear Mixed Model with encounter rates of lemurs 

in Madagascar’s eastern rainforest as the dependent variable (excluding the Human Influence 

Index; HII).  

Appendix S8: Model prediction for the Generalised Linear Mixed Model with encounter 

rates of lemurs in Madagascar’s eastern rainforest as the dependent variable (including the 

Human Influence Index; HII). 

Appendix S9: Relationship between elevation (in m a.s.l.) and the Normalised Difference 

Vegetation Index (NDVI) in Madagascar’s eastern rainforest. 


