
Automated Testing of Web Services Based on Algebraic Specifications

Dongmei Liu, Yuxin Liu, Xin Zhang
School of Computer Science and Engineering
Nanjing University of Science and Technology

Nanjing, 210094, P.R. China
dmliukz@njust.edu.cn, liuyuxin890930@sina.com

njust2048@163.com

Hong Zhu and Ian Bayley
Dept of Comp. and Comm. Technologies

Oxford Brookes University
Oxford OX33 1HX, UK

hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Abstract—The testing of web services must be done in a com-
pletely automated manner when it takes place on-the-fly due to
third-party services are dynamically composed to. We present
an approach that uses algebraic specification to make this
possible. Test data is generated from a formal specification and
then used to construct and submit service requests. Test results
are then extracted and checked against the specification. All
these are done automatically, as required. We present ASSAT
(Algebraic Specification-Based Service Automated Testing), a
prototype that performs these tasks and demonstrate its utility
by applying it to Amazon Web Services, a real-life industrial
example.

I. INTRODUCTION

A major problem in service-oriented engineering is that
it is difficult to trust third-party services. Testing brings
confidence that they will work as expected and has therefore
been the subject of much research [1], [2]. However, current
techniques are not completely automated, and this is a prob-
lem because third-party services are discovered dynamically
when human intervention is not possible. We solve the
problem of how to achieve complete automation by using
formal specification, algebraic specification in particular, as
a basis of correctness.

The rest of this paper is organised as follows. Section II
briefly reviews existing related works. Section III defines
preliminary mathematical notions and the specification lan-
guage SOFIA. Section IV gives the key algorithms of the
proposed technique. Section V presents the prototype tool
ASSAT. Section VI reports on a case study using ASSAT
with Amazon Web Services. Section VII concludes the paper
with a discussion of future work.

II. RELATED WORK

It is widely recognised that formal specification can be
used as the basis for automated software testing [3], [4],
and so much work has been reported in the literature on
combining formal methods with software testing [5]. In
this section, we first consider the existing approaches to
the formal specification of web services. None of these are
algebraically-based, however, so we then discuss the ad-
vantages of algebraic specification. We finally review work

where algebraic specification has been applied to testing
software in general rather than limited to web services. The
extension to web services is novel so our review on related
work is necessarily broader in scope.

A. Formal Specification of Web Services

Existing work on formal specification of web services can
be divided into two types. One type uses formal notations
indirectly by translating from the original service descrip-
tions in WSDL, OWL-S, BPEL and/or WSMO [1], [6], [7].
This often requires human input, however, and so cannot be
automatic as required, because service descriptions are not
semantically verifiable so extra semantic information must
be added.

The other type employs formal notations directly but only
for specifying behaviour. Examples include:
• finite state machines (FSMs) and their variants and

extensions, such as extended FSMs [8], Stream X-
Machines [9], and protocol state machines (PSMs) [10],

• labelled transition systems and process algebra, such as
symbolic labelled transition system STL [11], and

• various kinds of Petri-nets, such as [12].
Behaviour-based formal specifications like these can spec-

ify valid sequences of service invocations, for example, but
they are weak on functional correctness. Even where test
cases can be produced for individual services, it is not known
how to turn these into test cases for composed services. A
method is proposed for Petri nets in [12], in the context of
cloud computing, but as it has not been implemented, it is
unclear whether it is feasible.

B. Algebraic specification

Algebraic specification was first proposed in the 1970s as
an implementation-independent specification technique for
abstract data types [13], [14]. Since then, it has been ex-
tended to concurrent systems, state-based systems, software
components and service-oriented systems. The theoretical
foundations have likewise moved from initial algebras, to
final algebras, behavioural algebras [15] and co-algebras
[16]–[19].

1

The qualities of algebraic specifications that make them
more suited to web services than other formal specifications
are as follows. They are:
• independent of implementation detail, which is appro-

priate, because no such detail will be available about
third-party services,

• highly modular in a manner that suits flexible composi-
tion, as is also required by service-oriented engineering,

• easily translatable into ontology-based semantic de-
scriptions, facilitating registration and then dynamic
discovery and support [20], [21],

• suitable for specifying dynamic behaviour too, when
extended to co-algebraic specifications,

• written in a notation that is easy to learn and to
understand, according to empirical studies such as [22]–
[24].

Moreover, as we shall see, algebraic specifications allow
the whole testing process to be automated, including test
case generation, test execution and test oracles to deter-
mine the correctness of test results. This has already been
demonstrated with objects in OO software and with software
components [25].

C. Automated Testing Based on Algebraic Specifications

The most closely related works, applying algebraic speci-
fications, to entities other than web services, are as follows:
• Gannon et al’s work [26] and Gaudel et al.’s work of

testing tools for testing procedural programs [27],
• Frankl and Doong’s work of LOBAS specification

language and ASTOOT tool [28], and Hughe et al.’s
DAISTISH system [29] for testing OO software, and

• Zhu et el.’s CASOCC language and CASCAT tool [25],
[30] for Java Enterprise Beens software components.

The theoretical foundations of these systems and their
implementation techniques have been studied in [31]–[34].
We now summarise the key techniques underlying the latter.

In the context of software testing, each ground term of a
given signature has two interpretations: it is both a sequence
of operation invocations and a value. So to check whether
an equation is satisfied, substitute test data for each of
the variables and then invoke operations to calculate the
left-hand and right-hand sides. If the two are equal, the
implementation is correct on the test case; otherwise it is
not and there are errors.

Although the basic idea is simple and the first testing
tool was developed in the 1980s [26], significant work
was required to enable the automated testing of procedu-
ral programs [27], OO programs [28], [29] and software
components [25], [30]. These techniques cannot be applied
immediately to web services, however. They all rely on an
ability to create and initialise arbitrary instances of the entity
under test, be it an abstract data type, object instantiation of
a class, or a software component. In particular, the state of

the object before the operations must be copied and stored
for comparison with the state after the operations. This is
not possible with web services so in this paper we propose
a set of techniques to resolve these problems.

III. PRELIMINARIES

In this section, we briefly review the mathematical struc-
ture of algebraic specification on which our specification
language SOFIA is formally defined [35], [36].

A. Algebraic Structures

We regard a service-oriented system as consisting of a
collection of units, each with a unique identifier, called the
sort name. There are two ways a unit can be constructed
from another: extension and usage. As in [20], [21], we
assume that the specification of a software system is well-
structured in the following sense.
• Each type of software entity, each type of real-world

entity and each type of real-world concept is specified
by a corresponding specification unit with a unique
name.

• Any extension or usage relationship between software
entities, real-world entities and concepts has a corre-
sponding relationship between specification units.

A specification is a triple (Sp,Σ,Ax), where
1) Sp = 〈S,�,B〉, where S is a finite set of sorts, �

and B are are the uses and extends relations on S,
respectively;

2) Σ = {Σs|s ∈ S} is a set of unit signatures indexed
by s, so where each unit signature Σs defines a set of
typed operators on s;

3) Ax = {Axs|s ∈ S} is a finite set of axiom sets
indexed by s, so each axiom set Axs defines the
semantics of the operators on {x ∈ S | s � x∨x = s}
and the axioms describe the properties that these
functions must satisfy.

4) for all s and s′ ∈ S, s B s′ implies that Σs
′ ⊆ Σs

and Axs
′ ⊆ Axs .

For each s ∈ S, (Σs, Axs) is called the specification unit
for sort s. 2

We now define the notion of unit signature to represent
the structure of software units as follows. Let X be a finite
set of symbols. We write X∗ to denote the set of finite
sequences of symbols in X . In the sequel, we use Ws to
denote {x ∈ S|s � x ∨ x = s}∗.

Definition 1: (Unit Signature)
The unit signature Σs for a sort s consists of a finite family

of disjoint sets Σsw,w′ indexed by pairs of units (w,w′) with
w and w′ ∈Ws. Each element ϕ in set Σsw,w′ is an operator
symbol of type w → w′ , where w is the domain type and
w′ the co-domain type of the operator. 2

Such operators can be classified as constants, attributes,
and general operations as follows:

2

1) ϕ is a constant, if w = ∅, w′ = (s).
2) ϕ is an attribute, if w = (s), w′ = (s′), and s � s′ .
3) otherwise, ϕ is a general operation.
In the sequel, we will write ΣsC , ΣsV and ΣsG for the

subsets of Σs that contain the constants, the attributes and
the general operations, respectively, so Σs = ΣsC∪ΣsA∪ΣsG.

Let (Sp,Σ) be a given system signature and s ∈ S be
any given sort. We defined the notion of valid terms in [20],
[21] that can be used in the specification unit of sort s as
s-terms. Each s-terms is also typed and its type is w ∈Ws.

An equation in a specification unit of sort s has the form
τ = τ ′, where τ and τ ′ are s-terms of the same type. A
typical conditional equation in a specification unit of sort s
has the form

τ = τ ′, if c1 = d1, · · · , cn = dn.

where τ and τ ′ are s-terms of the same type, ci and di are
s-terms of the type si such that s � si ∨ si = s for all i =
1, 2, · · · , n, and c1 = d1, · · · , cn = dn are the conditions. In
our theory, we extend the conditional equation by using any
comparison operators including >,<,>=, <=, <> in the
conditions. So a general conditional equation in specification
unit of sort s has the form

τ = τ ′, if c1R1d1, · · · , cnRndn.

where Ri is a comparison operator.
An axiom set defined in a specification unit of sort s

describes the properties that its operators are required to
satisfy. An axiom is a set of conditional or unconditional
equations with all variables in these equations universally
quantified at the outermost. Formally, we have the following
definition.

Definition 2: (Axiom Set)
The axiom set Axs for sort s consists of a finite set

of axioms. Each element axsi ∈ Axs is an ordered pair
(GV si , E

s
i) where

1) GV si is a finite set, whose elements are the variables
declared. These variables are global variables that
occur in axioms axsi .

2) Esi = {(LV si,j , esi,j)} is the set of conditional equations
of axiom axsi . Each element in Esi is an ordered pair
(LV si,j , e

s
i,j), where LV si,j is the set of local variables

declared within equation esi,j and each element lvsi,j,k
is declared as the form lvsi,j,k = τsi,j,k, τsi,j,k is a s-
term, and esi,j is a conditional or an unconditional
equation. LV si,j is empty if there are no local variables.

B. Semantics of Algebraic Specification

We now define the semantics of algebraic specifications
by defining what it means for an implementation to be
correct with respect to a specification. In general, an im-
plementation of a specification is a mathematical structure
that realises the operators in the signature and satisfies the
axioms.

Definition 3: (Algebra)
Given a system signature (Sp,Σ), a (Sp,Σ)-algebraA is

a mathematical structure (A,F) that consists of a collection
A = {As|s ∈ S} of sets indexed by s, and a collection F of
functions indexed by (w,w′), where w,w′ ∈Ws, s ∈ S such
that for each operator ϕ : w → w′, the function fϕ ∈ F has
domain Aw and co-domain Aw′ , where Au = As1 × · · · ×
Asn , when u = (s1, s2, · · · , sn). 2

The evaluation of a s-term in an algebra depends on the
values assigned to the variables that occur in the s-term.
Such an assignment α of variables Vs, s ∈ S, in an algebra
A is a function from Vs to As.

Definition 4: (Evaluation of s-terms in an algebra)
Given an assignment α, the evaluation of a s-term τ in an

(Sp,Σ)-algebra A = (A,F), written Evaα(τ), is defined
as follows.

1) Evaα(v) = α(v);
2) Evaα(ϕ(τ)) = fA,ϕ(Evaα(τ)).
3) Evaα(〈τ1, · · · , τn〉) = 〈Evaα(τ1), · · · , Evaα(τn)〉;
4) Evaα(τ#k) = VK , where Evaα(τ) = 〈V1, · · · , Vn〉,

1 ≤ k ≤ n. 2
Definition 5: (Satisfaction)
Let e be an equation. Then an (Sp,Σ)-algebra A =

(A,F) satisfies e, written A |= e, if for all assign-
ments α, we have that Evaα(τ) = Evaα(τ ′) whenever
Evaα(ci)RiEvaα(di) is true for all i = 1, 2, · · · , n.

Let E = (Sp,Σ,Ax) be a specification. An (Sp,Σ)-
algebra A = (A,F) satisfies specification E , written A |= E ,
if for all equations e in Ax, we have that A |= e. 2

C. The SOFIA Specification Language

SOFIA is a new algebraic specification language based
on the algebraic structure described above. Here, we give a
brief introduction to the language. The readers are referred
to [35] for the reference manual.

The overall structure of a SOFIA specification is a collec-
tion of specification units. A unit can be split into two partial
units: a Signature unit, to define the signature, and an Axiom
unit, to define the axioms that apply to the signature unit.
The users can also define auxiliary functions and concepts in
a Definition unit. More formally, in BNF notation we have:

<Specification> ::= <Unit>*
<Unit> ::= <Spec Unit> | <Signature Unit>
| <Axiom Unit> | <Definition Unit>

The “extends” and “uses” relations between specification
units are declared in clauses introduced with the keywords
extends and uses, as shown below.

<Spec unit> ::=
Spec <Sort Name> [<Observability>];
[extends <Sort Names>][uses <Sort Names>]
<Signature>; [<Axioms>] End

SOFIA also declares if a software entity is observable in
the sense that its states or values can be directly tested for

3

equality; otherwise, its states or values have to be checked
by other means, e.g. through observers. SOFIA explicitly
declares the three kinds of operators mentioned earlier in
this section using keywords Const for constants, Attr for
attributes, and Operation for general operators. For example,
here is a SOFIA specification for Stack.
Spec Stack; uses Int, Real, Bool;
Const: nil;
Attr length: Int; isEmpty: Bool; top: Real;
Operation
Push(Stack,Real): Stack;
Pop(Stack): Stack;
Axiom
For all x: Real, s: Stack that
s.Push(x).Pop = s;
s.Pop.length = s.length-1, if s.length > 0;
s.length = 0, if s.isEmpty = True;
s.isEmpty = True, if s.length = 0;
s.isEmpty = False, if s.length > 0;
End
End

IV. TESTING METHOD

This section describes the testing method.

A. The Testing Process
As shown in Figure 1, the test process consists of three

steps:

Figure 1. The Testing Process

1) generate test data from the given algebraic specifica-
tion,

2) construct a sequence of service requests from test data
and submit the service requests to the service under
test, and

3) receive the service responses from the service under
test and check if the responses are correct according
to the algebraic specification.

This process is implemented by Algorithm 1.

Algorithm 1 TE: Test Execution
Input: The specification of the web service under test
Output: Testing result of EUT, tr

Step 1: //Initialisation
V si,j = ∅ : T si,j = ∅
CEsi,j = ∅ : CCsi,j = ∅
Step 2: //Generate test data for GV si
for each gvsi ∈ GV si do

if the sort type of gvsi is primitve then
Generate a value t randomly with satisfaction of

constraints
else //Generate test data with a composition structure

tree
t = TDG(the sort type of gvsi)

end if
V si,j = V si,j ∪ gvsi : T si,j = T si,j ∪ t

end for
Step 3: //Check whether test data satisfy the constraints
CC(T si,j , E

s
i) //Constrcut constraints for EUT

if there is t ∈ T si,j that doesn’t satisfy the constraints then
goto Step 2

end if
Step 4: //Execute operations of each s-term for declara-
tion of local varaible of EUT
if LV si,j is not empty then

for each lvsi,j,k ∈ LV si,j do
Substitute test data for variables of s-term τsi,j,k
t = TP (τsi,j,k)
V si,j = V si,j ∪ lvsi,j,k : T si,j = T si,j ∪ t
Substitute t for variable lvsi,j,k of s-terms of EUT

end for
end if
Step 5: //Execute operations of each s-term of EUT
for each s-term τ of EUT do

t = TP (τ) : Substitute t for τ of EUT
end for
Step 6: //Check whether conditions of EUT satisfy the
constraints
for each condition ciRidi of EUT do

if ciRidi does not satisfy the constraints then
goto Step 2

end if
end for
Step 7: //Check whether the results are equivalent
if τ = τ ′ then tr = Pass
else tr = Failed
end if

4

In Algorithm 1, TDG, CC and TRP denote sub-
algorithms. TDG generates test data with a composition
structure tree, CC constructs constraints of EUT, and TRP
performs test execution of the operations of an s-term.
The details of these algorithms are given in the following
subsections.

B. Test Data Generation
Automated software testing is made possible by the ob-

servation that a ground (ie variable-free) term corresponds
to a sequence of service requests if each operation cor-
responds to a service request. Therefore, test data can be
generated simply by substituting ground terms for variables
in axiom equations. The left-hand and right-hand sides will
be equivalent if the service satisfies the specification and
the constraints are met, if the equation is conditional. These
constraints can be either equations or Boolean expressions,
as seen respectively in the following examples for the
specification of Stack.

s.isEmpty = True, if s.length = 0;
s.isEmpty = False, if s.length > 0;

The constraints must be evaluated first using service
requests, as discussed in Subsection IV-D. Here, we focus
only on how to generate the ground terms. The method
depends on the sort type of the variable being substituted
for. If the sort is primitive, random values are used, filtering
according to the constraints. For variables of non-primitive
sorts, the traditional method is to build up a term by
systematically applying constructor operators to constants
and random values. We propose here an alternative based on
the notions of compositional sort and composition structure
trees, which we now define.

A sort is compositional if its specification unit can be
constructed by composing other units, including predefined
primitive sorts such as String, Integer and Bool. Its state
is the aggregation of the states of its components. The
composition structure tree is that structure expressed as a
tree, and is more formally defined as follows.

Definition 6: (Composition Structure Tree)
The composition structure tree for a compositional sort s

is inductively defined as follows.
1) If s is a primitive sort, its composition structure tree

is a single node marked with the name of the sort;
2) If s is a sort with no attributes in its signature, its

composition structure tree is also a single node marked
with the name of the sort;

3) If the signature of sort s contains attributes
as1, a

s
2, · · · , asn, n ≥ 1, and their codomain types are

s′1, s
′
2, · · · , s′n respectively, the composition structure

tree for sort s has a root node marked with the name
of sort s and n sub-trees such that the k’th subtree is
the composition structure tree of sort s′k and the edge
from the root node to the k’th subtree is marked with
the name of attribute ask. 2

Note that when the sort contains constants, these are
ground terms used as test data. They are especially useful
when the constraints are difficult to satisfy. In such a situa-
tion, an auxiliary specification unit is constructed, extending
the original with appropriate constants. Here is an example
where constants ASIN, UPC, SKU, EAN and ISBN are used
as various instances of a commercial bar code, where it is
infeasible to generate a random value that is meaningful.

Spec CBarCode;
Const id1, id2, id3, id4, id5;
Attr toString: String;
Axiom
id1.toString = "ASIN";
id2.toString = "UPC";
id3.toString = "SKU";
id4.toString = "EAN";
id5.toString = "ISBN";

End
End

Algorithm 2 implements the above test data generation
method.

Algorithm 2 TDG: Test Data Generation
Input: A sort type s
Output: A composition structured value cv of sort s
CEs = ∅ // Constraints of sort s
for each ϕ : s→ sk ∈ ΣsA do

if sk is primitive then
Generate a value t randomly with satisfaction of

constraints CEsk
for each equation e of s do

Substitute t for .ϕ of all s-terms of e
if there is no variable in e then

CEs = CEs ∪ e
end if

end for
Assign t to node s.ϕ of cv

else
TDG(sk)

end if
end for
if test data cv don’t satisfy the constraints CEs then

TDG(s)
end if

C. Test Result Propagation

After generating test data, we construct service requests
according to the s-terms of the equation under test (EUT)
and issue the requests via HTTP. For a ground term, the
sequence of service requests is essentially the operations ϕ in
the s-terms in left-to-right order. When receiving a response
to a service request, we extract the values from response
message and substitute these values together with the test
data for variables of the s-termsof the EUT either for the

5

subsequent request or for checking correctness. Algorithm
3 below gives the details.

Algorithm 3 TRP: Test Result Propagation
Input: A s-term τ with the form x.f1.f2.....fn
Output: A final result of executions of s-term τ
Push(ST s, x) //Stack ST s used to save the result of
each execution of s-term
for each fi do

if fi is a general operation then
Get values from T si,j according to inputs of fi
Construct a HTTP request to execute service op-

eration fi
Send the HTTP request to the service under test
Get the response t once it returns to the service

requester
Push(ST s, t)

else if fi is an attribute then
Get the top value from ST s

Get the value t from ST s.top by the keyword fi
Push(ST s, t)

end if
end for
Return ST s.top

D. Evaluation of Test Results

When a sort represents not a primitive but instead struc-
tured data, a class, a component, or even a service, the basic
idea of generating two ground terms and testing for equality
does not work. One solution is to add an observable context
to both sides of the equation, making them both observable
and comparable. For example, in the axiom of Stack below,
the two sides of Equ. (1) are not comparable, but once the
attribute length is applied to both sides, giving Equ. (2), the
two sides are comparable.

∀x : Real ∀s : Stack s.Push(x).Pop = s; (1)
s.Push(x).Pop.length = s.length; (2)

Observation context is a crucial technique that solves
the test oracle problem by re-expressing the comparison of
structured data types as comparisons of primitive types, and
it is formally defined as follows [33].

Definition 7: (Observable Context)
A context of a sort s is an s-term C with one occurrence of

a special variable of sort s. The value of an s-term τ of sort
s in the context of C, written as C[τ], is the s-term obtained
by substituting τ into the special variable. An observation
context oc of sort s is a context of sort s and the sort of the
s-term oc is s′, where s � s′. To be consistent on notations,
we write .oc : s→ s′ to denote an observation context oc.
An observation context is primitive if s′ is an observable
sort. In such cases, we say that the context is observable. 2

The general form of an observable context oc of sort s is:
.f0(. . .).f1(. . .). · · · .fk(. . .).obsk+1.obsk+m

where f0, f1, . . . , fk are the general operations of sort
s, s1, . . . , sk that might be the same and one of the co-
domains of fi is sort si+1; obsk+1, . . . , obsk+m are the
attributes of sort sk+1, . . . , sk+m respectively and the co-
domain of obsk+j is sort sk+j+1. The observable context
might not contain any general operation, but must end with
an attribute.

Definition 8: (Observable Context Sequence)
An Observable Context Sequence of a sort s in our spec-

ification is the sequential composition .oc1.oc2.ocn, a
sequence of observable contexts oc1, oc2,, ocn, where
.oc1 : s → s1, .oc2 : s1 → s2, . . . , .ocn : sn−1 → sn.

An observable context sequence is primitive if sn is an
observable sort.2

In the case of Stack, for example, the following are
observation contexts, all of which are primitive because the
predefined sort Int is observable.
_.top(), _.Pop.top(), _.Pop.Pop.top()
_.length(), _.Pop.length(), _.Pop.Pop.length()

Test result evaluation plays two roles in our testing
method. First, as discussed above, it checks if a service
satisfies the axioms in the specification. Secondly, it checks
whether the test data satisfy the constraints on the ax-
ioms when the axiom is a conditional equation. If not,
the test data are ignored and new test data are generated.
To check whether a condition is satisfied, a sequence of
service requests that correspond to the condition may also be
submitted to the service under test. Algorithm 4 constructs
constraints which are used to check if a set of conditions are
true. It is used to check if test data satisfy the constraints
of an axiom, and also to check if an axiom is satisfied by a
service.

Algorithm 4 CC: Correctness Checking
Input: Test data T si,j and equations Esi of axiom axsi
Output: Constraints CEsi,j and CCsi,j for EUT

for each esi,j ∈ Esi do
Substitute test data for variables of all s-terms of esi,j
if there is no variable of esi,j then

CEsi,j = CEsi,j ∪ esi,j
end if

end for
for each condition ciRidi of EUT do

if there is no variable of ciRidi then
CCsi,j = CCsi,j ∪ ciRidi

end if
end for

V. THE PROTOTYPE TOOL ASSAT
This section presents a prototype tool called ASSAT,

which stands for Algebraic Specification based Services

6

Automatic Testing.
ASSAT has been developed in Java to implement our

approach described above. As shown in Figure 2, it contains
four main components.

1) Specification Parser: parses algebraic specifications
written in SOFIA, generates a parse tree, checks the
specification is syntactically well-formed, checks the
equations in the axioms are type correct.

2) Test Data Generator: as described in the previous
section.

3) Test Driver: constructs a sequence of service requests
according to the s-term of the equations under test,
recording the responses as test results.

4) Test Result Evaluator: checks the correctness of the
test results and reports errors found to the user.

Figure 2. Overall Structure of the ASSAT Tool

The inputs to ASSAT are the SOFIA specification and the
web service under test. Figure 3 shows the interface. On the
left is the SOFIA specification and on the right is test data
and test results. The Testing Times field is used to input the
number of test cases to be used.

VI. CASE STUDY

This section reports a case study of using the testing
method and the tool with a real-life industry example: the
Amazon Web Services AWSECommerceService.

A. Algebraic Specification of AWSECommerceService

The Amazon Web services AWSECommerceService pro-
vides an API for developers to build their own applications.
One of its many operations is ItemSearch, with many pa-
rameters, shown in table I.

The whole AWSECommerceService API has been spec-
ified in SOFIA. The specification has a four-layer structure
as shown in Table II. Basic level units such as item and
metadata are constructed using only primitive sorts. Sim-
ilarly, units at the first level, defining common concepts
used by all services such as errors and cart, are constructed
from basic and primitive level units. The second level is
on top of the first level and consists of specification units
at a higher level of abstraction, such as the requests and
responses of various services. Finally, the top-level units

Table I
PARAMETERS OF ITEMSEARCH

Parameter Parameter type Description
AWSAccessKeyId String Login account of AWS

web site
AssociateTag String A tag generated when reg-

istering
Condition String Conditons of goods
Keywords String Keyword of goods
Operation String Operation of service
ResponseGroup String Information returned
SearchIndex String Sort of goods
Service String Service transfered
Version String version number
MaximumPrice nonNegativeInteger The largest price of goods
MinimumPrice nonNegativeInteger The least price of goods
Timestamp String The current timestamp

and the format is the ISO
- 8601 standard format

Signature String A string which is got by
encrypting all the parame-
ters before with HMAC

Table II
NUMBER OF UNITS IN AWSECOMMERCESERVICE SPECIFICATION

Level Sort number
Top AWSECommerceService 1
Second BrowseNodeLookupRequest,

BrowseNodeLookupResponse,
Request

24

First OperationRequest HttpHeaders, Ar-
guments

3 56

BrowseNodes BrowseNode,
Properties,
Children

6

Cart CartItems,
SavedFor-
LaterItems,
SimilarProducts

8

Items Item, ImageSets,
Offers

36

Midcommon Errors,
TopSellers,
NewReleases

3

Basic Common, Item, MetaDada 46
Total 127

specify the service operations of the API. The numbers of
specification units at each level is also shown in the table.

For the sake of space, here we define only the single top
level specification unit.

Spec AWSECommerceService;
uses Common, ItemSearchRequest,ItemSearchResponse,
BrowseNodeLookupRequest,BrowseNodeLookupResponse,
CartAddRequest,CartAddResponse,
CartClearRequest,CartClearResponse,
CartCreateRequest,CartCreateResponse,
CartGetRequest,CartGetResponse,
CartModifyRequest,CartModifyResponse,
ItemLookupRequest,ItemLookupResponse,
SimilarityLookupRequest,SimilarityLookupResponse;

Operation
ItemSearch(Common,ItemSearchRequest,
ItemSearchRequest):ItemSearchResponse;

BrowseNodeLookup(Common,BrowseNodeLookupRequest,

7

Figure 3. The Interface of ASSAT

BrowseNodeLookupRequest):BrowseNodeLookupResponse;
CartAdd(Common,CartAddRequest,
CartAddRequest):CartAddResponse;

CartClear(Common,CartClearRequest,
CartClearRequest):CartClearResponse;

CartCreate(Common,CartCreateRequest,
CartCreateRequest):CartCreateResponse;

CartGet(Common,CartGetRequest,
CartGetRequest):CartGetResponse;

CartModify(Common,CartModifyRequest,
CartModifyRequest):CartModifyResponse;

ItemLookup(Common,ItemLookupRequest,
ItemLookupRequest):ItemLookupResponse;

SimilarityLookup(Common,SimilarityLookupRequest,
SimilarityLookupRequest):SimilarityLookupResponse;

End

Each operator has a set of axioms to characterise its
semantics. For reasons of space, we give just those for the
ItemSearch operator.

Axiom AWSECommerceService;
For all A:AWSECommerceService, C:Common,
X: ItemSearchRequest, X1:ItemSearchRequest that
Let res = A.ItemSearch(C,X,X1),

req = res.items.request
in X1.Keywords = req.itemSearchRequest.Keywords;
End
Let res = A.ItemSearch(C,X,X1),

req = res.items.request,
code = req.errors.error.Code

in code = "AWS.MinimumParameterRequirement",
if X1.Keywords = "";

End
Let res = A.ItemSearch(C,X,X1),

req = res.items.request
in req.IsValid = "False", if X1.Keywords = "";
End
Let res = A.ItemSearch(C,X,X1),

req = res.items.request,
code = req.errors.error.Code

in code = "AWS.ECommerceService.NoExactMatches",
if X1.MinimumPrice > X1.MaximumPrice;

End
End
End

where the equations respectively describe the following
properties

1) values in responses should be equal to ones in requests
by Keywords.

2) there is an error type called
AWS.MinimumParameterRequirement if Keywords is
null.

3) value of IsVaild in reponses is False if Keywords is
null.

4) there is an error type called
AWS.ECommerceService.NoExactMatches in
responses if MinimumPrice is greater than
MaximumPrice in requests.

B. Testing Results and Analysis

Table III shows the results of automated tested of
AWSECommerceService using ASSAT, showing in particu-
lar the numbers of test cases in which the web service failed
to satisfy the above four axioms; TT denotes the number of
test cases generated.

Table III
TESTING RESULTS

Axiom

NOF TT

10 50 100 200 500 800 1000

Equation 1 0 0 0 0 0 0 0
Equation 2 2 14 21 52 128 193 241
Equation 3 0 0 0 0 0 1 0
Equation 4 3 15 33 59 147 267 329

8

Most failures occurred with equations 2 and 4 and were
caused by the error Invalid Enumerated Parameter. Manual
checking revealed that parameter Response Group was out
of the range, and different from the service’s WSDL file. In
other words, the implementation of AWSECommerceService
is not consistent with its WSDL specification and a bug has
been found.

Equation 1 and 3 are not affected by the error Invalid
Enumerated Parameter, and the value of Keywords in the
responses was as the request asked for. On test cases whose
Keywords was null, the value of IsValid attribute of the
responses was False as expected and as specified in axiom
3. On one occasion, testing against equation 3 failed but this
was caused by a connection timeout.

VII. CONCLUSION AND FUTURE WORK

In this paper, we developed an approach for automated
testing of web services based on algebraic specifications
written in SOFIA. We presented the details of algorithms for
test data generation, test execution and test result evaluation.
An automated prototype tool ASSAT has been implemented
for testing web services. A case study with a real industrial
web service demonstrated the feasibility of the proposed
approach.

We are now conducting more experiments to evaluate the
fault detection ability and cost-effectiveness of the technique.
We also continue to pursue more effective and efficient ways
to generate test data using artificial intelligent techniques. To
improve the practical usability of our approach, we are also
investigating the automatic transformation of ontological
descriptions of services into algebraic specifications.

ACKNOWLEDGEMENT

The work reported in this paper is partially supported
by National Natural Science Foundation of China (Grant
No. 61272420) and Jiangsu Qinglan Project, and partially
supported by EU FP7 project MONICA on Mobile Cloud
Computing (Grant No.: PIRSES-GA-2011-295222).

REFERENCES

[1] Bozkurt M. , Harman M. and Hassoun Y. , “Testing and ver-
ification in service-oriented architecture: a survey,” Software
Testing, Verification and Reliability, vol. 23, no. 4, pp. 261–
313, 2013.

[2] Canfora G., Di Penta M., “Service-oriented architectures
testing: A survey,” LNCS, vol.5413, pp. 78–105, 2009.

[3] Gaudel, M.-C., “Testing Can Be Formal, Too”, in Proc. of
TAPSOFT ’95, Springer-Verlag, pp. 82–96, 1995.

[4] Gaudel, M.-C., “Software Testing Based on Formal Specifi-
cation”, P. Borba et al. (Eds.), in Proc. of PSSE 2007, LNCS
6153, pp. 215–242, 2010.

[5] Hierons R M, Bogdanov K, Bowen J P, et al., “Using formal
specifications to support testing,” ACM Computing Surveys,
vol. 41, no. 2, pp. 1–76, 2009.

[6] Tahir, A., Tosi, D., Morasca, S.,“A systematic review on the
functional testing of semantic web services”, The Journal of
Systems and Software, Vol. 86, pp2877–2889, 2013.

[7] Endo, A. T., and Silva Simao, A., “Formal Testing Ap-
proaches for Service-Oriented Architectures and Web Ser-
vices: a Systematic Review”, Technical Report, No. 348, In-
stituto de Ciencias Matem?aticas e de Computa?c?ao, Brazil,
ISSN - 0103-2569, March 2010.

[8] Keum C. S., Kang, S., Ko, I. Y., et al., “Generating test cases
for web services using extended finite state machine”, Testing
of Communicating Systems, Springer, pp. 103–117, 2006.

[9] Ramollari, E., Kourtesis, D., Dranidis, D., et al., “Leveraging
semantic web service descriptions for validation by automated
functional testing”, The Semantic Web: Research and Appli-
cations. Springer, pp. 593–607, 2009.

[10] Bertolino, A., Frantzen, L., Polini, A., et al., “Audition of web
services for testing conformance to open specified protocols”,
Architecting Systems with Trustworthy Components. Springer,
pp. 1–25, 2006.

[11] Frantzen, L., de las Nieves Huerta M., Kiss, Z. G., et al. “On-
the-fly model-based testing of web services with Jambition”,
Web Services and Formal Methods. Springer, pp. 143–157,
2009.

[12] Zhang, X., Wu, C. and Xue, S. “Petri nets based test case
selection model for service composition in cloud”, in Proc.
of the 4th IEEE Int’l Conf. on Digital Manufacturing and
Automation, pp. 914–917, 2013.

[13] Goguen, J. A., Thatcher, J. W., Wagner, E. G., and Wright,
J. B., “Initial algebra semantics and continuous algebras,”
Journal of ACM, vol. 24, no. 1, pp. 68–95, 1977.

[14] Ehrich, H.-D., “On the theory of specification, implementa-
tion, and parametrization of abstract data types,” Journal of
ACM, vol. 29, no. 1, pp. 206–227, 1982.

[15] Goguen, J.A. and Malcolm,G., “A hidden agenda,” Theor.
Comput. Sci., vol. 245, no. 1, pp. 55–101, 2000.

[16] Cı̂rstea C., “Coalgebra semantics for hidden algebra: Pa-
rameterised objects and inheritance,” Recent Trends in Alge-
braic Development Techniques, 12th International Workshop
(WADT’97), pp.174–189, 1997.

[17] Rutten J. M. , “Universal coalgebra: a theory of systems,”
Theor. Comput. Sci., vol. 249, no. 1, pp. 3–80, 2000.

[18] Cı̂rstea C., “A coalgebraic equational approach to specify-
ing observational structures,” Theoretical Computer Science,
vol.280, no. 1-2, pp. 35–68, 2002.

[19] Bonchi F. and Montanari U., “A coalgebraic theory of reactive
systems,” Electr. Notes Theor. Comput. Sci., vol. 209, pp.
201–215, 2008.

[20] Liu, D., Zhu, H., and Bayley, I., “ From Algebraic Formal
Specification to Ontological Description of Service Seman-
tics,” in Proc. of ICWS 2013, pp. 579–586, 2013.

[21] Liu, D., Zhu, H., and Bayley, I., “Transformation of Alge-
braic Specifications into Ontological Semantic Descriptions of
Web Sservices,” International Journal of Services Computing,
vol. 2, no. 1, pp.58–71, 2014.

[22] Zhu, H. and Yu, B., “An Experiment with Algebraic Speci-
fications of Software Components,” in Proc. of QSIC 2010,
pp. 190–199, 2010.

[23] Liu, D., Zhu, H., and Bayley, I., “Applying algebraic spec-
ification to cloud computing–a case study of infrastructure-
as-a-service GoGrid,” in Proc. of ICSEA 2012, pp. 407–414,
2012.

[24] Liu, D., Zhu, H., and Bayley, I., “A case study on algebraic
specification of cloud computing,” in Proc. of PDP 2013, pp.
269–273, 2013.

[25] Yu, B., Kong, L., Zhang, Y., and Zhu, H., “Testing java
components based on algebraic specifications,” in Proc. of
ICST 2008, pp. 190–199, 2008.

9

[26] Gannon J, McMullin P, Hamlet R., “Data abstraction, im-
plementation, specification, and testing,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 3,
no. 3, pp. 211–223, 1981.

[27] Bernot G. , Gaudel M.-C. , and Marre B., “Software testing
based on formal specifications: a theory and a tool,” Software
Engineering Journal, vol. 6, no. 6, pp. 387–405, 1991.

[28] Doong R. K. and Frankl, P. G., “The ASTOOT approach to
testing object-oriented programs,” ACM TSEM, vol. 3, no. 2,
pp. 101–130, 1994.

[29] Hughes M., Stotts, D., “Daistish: systematic algebraic testing
for OO programs,” in Proc. ISSTA 1996, ACM Press, pp.
53–61, 1996.

[30] Kong, L., Zhu, H., and Zhou, B., “Automated testing EJB
components based on algebraic specifications,” in Proc.
COMPSAC’07, vol. 2, pp. 717–722, 2007.

[31] Chen, H. Y. , Tse T. H. , Chan, F. T., and Chen, T. Y. ,
“In black and white: An integrated approach to class-level
testing of object-oriented programs,” ACM Trans. Softw. Eng.
Methodol., vol. 7, no. 3, pp. 250–295, 1998.

[32] Chen, H. Y. , Tse T. H. , and Chen, T. Y., “TACCLE:
a methodology for object-oriented software testing at the
class and cluster levels,” ACM Trans. Softw. Eng. Methodol.,
vol. 10, no. 1, pp. 56–109, 2001.

[33] Zhu, H., “A Note on Test Oracles and Semantics of Algebraic
Specifications”, in Proc. of QSIC 2003, pp. 91–99, 2003.

[34] Chen, H.Y., and Tse, T.H. , “Equality to Equals and Unequals:
A Revisit of the Equivalence and Nonequivalence Criteria
in Class-Level Testing of Object-Oriented Software,” IEEE
Transactions on Software Engineering, vol. 39, no. 11, pp.
1549-1563, 2013.

[35] Zhu, H., Liu, D., and Bayley, I., “Reference manual of the
SOFIA algebraic specification language” Technical Report
TR-CCT-AFM-01-2013, Oxford Brookes University, Oxford,
UK, 2013.

[36] Liu, D., Zhu, H., and Bayley, I., “SOFIA: An Algebraic
Specification Language for Developing Services,” in Proc. of
SOSE 2014, pp. 70–75, 2014.

10

