
K-Nearest Neighbor Algorithm: Proposed Solution
for Human Gait Data Classification

Shadi Eltanani, Tjeerd Olde Scheper and Helen Dawes
School of Engineering, Computing and Mathematics

Faculty of Technology, Design and Environment

Oxford Brookes University

Oxford, United Kingdom

Email: {seltanani, tvolde-scheper, hdawes}@brookes.ac.uk

Abstract—Gait is a well-known motive means for humans. It
is both energetically demanding and reflects several of human
physical, mental and energetic disorders. Detecting these ab-
normalities can help medical professionals for better modelling
and detection of biosystem chronic diseases, which enable timely
treatment of patients and help control of the diseases’ spread.
In this paper, K-Nearest Neighbour (KNN) machine learning
classification algorithm highlights the comparison between the
gait patterns of normal healthy individuals and the patients
suffering from irregular gait patterns caused by physical disorder
conditions, including strapped muscles. Moreover, the Cross
Validation test has addressed to examine how accurately the
model fits the real-world clinical data. The experimental results
show that the KNN algorithm can effectively be a robust
learning classifier in classifying normal and abnormal human gait
features. The classification performance of our proposed model is
67.7%, and its effectiveness has evaluated at a minimum square
error rate.

Index Terms—Human Gait, K-Nearest Neighbour (KNN),
Cross Validation, Machine Learning, Square Error Rate, Classi-
fication.

I. INTRODUCTION

G
AIT is a popular identity in human beings and it

basically describes the complex metabolic energy

process a person exerts. Several health-related consequences

are attributed to the imbalance of metabolic responses

the human gait reveals. This chaos contributes to major

disorders in the biosystem, including physical immobility

(Muscle Atrophy), mental disturbance (Alzheimers,

Parkinsons), chronic energetic imbalances (Diabetes, Obesity,

Malnutrition), and Neuromuscular deficiency (Cerebral

Palsy, Myelomeningocele, Muscular Dystrophy, Rheumatoid

Arthritis, Stroke, Poliomyelitis) [1]. Consequently, the

analysis of gait signal receives a great attention in the medical

field by physicians. This is not only because it helps in

diagnosis of biosystem associated diseases, but also assists in

the effectiveness of therapeutic solutions and interventions.

Inspired by the recent advances of Machine Learning (ML),

several research works attempted to utilize ML algorithms

in a number of gait analysis applications in healthcare to

potentially diagnose gait disorders or to predict the risk of

physical instability or to monitor changes in movement based

on gait patterns.

K-Nearest Neighbour (KNN), for instance, is a powerful su-

pervised machine learning technique that depends on learning

from data to solve classification problems with high classi-

fication performance. The rationale of this learning analysis

tool is to model whatsoever data based on a binary criterion,

which thereby aims to assign a categorical label to every

input sample. Within this context, the binary classification

basis of KNN has significant practical implications in early

detection and diagnosis of gait pattern abnormalities. This

vigorously prompts clinical interventions that can help prevent

the imbalance of biosystem chaos and subsequently assist in

motor recovery, especially in people suffering from loss of

independence due to chronic diseases. This kind of classi-

fication could significantly progress to various future KNN

application, in particular, as gait diagnosis. The selection

of KNN technology, ranked as a trustworthy gait classifier,

is primarily driven by its ability to build robust predictive

models. This depends on the optimal k nearest Neighbours as

a Euclidean distance in a Euclidean space by considering the

majority of votes from Neighbours labels. Many prior research

work has considered using KNN technique as a gait classifier

for various scenarios. The authors in [2], for instance, utilised

the KNN classifier to discriminate the individuals gender in

the monitoring and surveillance operations. Moreover, the

work of [3] reported different machine learning schemes,

including the use of KNN approach to detect the neurological

abnormalities in brain using various human gait patterns.

Furthermore, it is reported in [4] that humans distance walking

at the same speed have been recognised in the context of

KNN classification process. Nevertheless, the KNN based-rule

researched in [5] is introduced to detect healthy gait feature

subjects caused by Parkinson disease. Additionally, the KNN

principle, based on the distance between the right and left gait

skeletal joints, is employed by authors in [6], to build a secure

authentication system so that human cognitive behaviors can

be recognised. Likewise, the research in [7] presented the

KNN as a data classifier to differentiate biometric related-

gait features based on collected data from a wearable sensor

device, which fundamentally considered the best matched

gait signature metrics as a classification measure to identify

individuals. The KNN classification rule is implemented in [8]

to classify human activities based on their sitting, standing,
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running and walking setups. Similarly, the authors in [9]

developed the same approach as in [8] but the classification

process was run on Micro-Doppler data of gait features. In

[10], the authors addressed the use of KNN approach to

classify pedestrian motion data according to the placement

of the inertial measurement units (IMUs) device on different

parts of human joints, including fixing hand, swinging hand,

pocket, and backpack. Adding to that, the research in [11]

tested KNN classifier to detect a host of a turning activities

of a lower limb prosthesis using a wearable sensor data.

This paper implements a KNN learning algorithm to auto-

matically classify normal and pathological gait data patterns

for a number of individuals. The model is evaluated on a real-

world medical data, where the results showed that the highest

classification performance associated with significant low error

rates that makes it the best classifier depends on the scale size

of the data split.

The rest of this paper is organized as follows. In section

II, the theory of KNN approach is described. In section III,

the methodology of our experiment is reported. In section IV,

the simulation results are analysed and discussed. And finally,

some conclusions are drawn in section V.

II. K-NEAREST NEIGHBOUR (KNN)

A. Overview of KNN

The KNN is a non-parametric supervised machine learn-

ing classification technique. The principle of KNN relies

on computing the Euclidean distance between the test (un-

known data points) and the training data samples. Let x ∈
R

n×d=(x1, ..., xn) be the matrix of features, where n is the

number of training samples and d is the number of features.

For a given an arbitrary point in the unknown samples set xo,

the Euclidean distance in the feature plane R
p, where p = 2

is a real number, can be formulated as:

di = ‖xr − xo‖p =

(
n∑

i=1

|xi − xo|
p

) 1

p

(1)

To classify a number of features into M classes, then

the outcome of classified entities can be presented as

Ω={Ω1, ...,Ωm}, where 1 ≤ m ≤ d. Choosing the k

training samples with the minimum distance to the unknown

data point xo, the KNN algorithm calculates the number of

Neighbours assigned to each data class l ∈ R
1×d=(l1, ..., ld)

existing in the training set Sr={(x1, l1), ..., (xn, ld)}, where

xr ∈ R
n×1=(x1, ..., xn) is the training example associated

with Sr. Each member in Sr corresponds to a class label

in Ω. The process is fundamentally based on estimating the

conditional probability for each class as an empirical fraction.

This can mathematically be given by:

Pr = p
[
m(l) ∈ l | x = xo

]
=

1

k

∑

i∈N (l,Sr)

I(xr ∈ l) (2)

where N (l,Sr) are the indices of the k nearest data samples

to l in the training set Sr. I(.) is an indicator function

expressed as:

I(w) =

{
1, if w is True

0, otherwise
(3)

III. METHODOLOGY

In this section, all gait features were examined using the

implemented KNN algorithm. Software routines were devel-

oped in Matlab R2018b for analysing the gait data samples

and to perform several tests, including tests to examine effects

of tuning the k parameter with the aid of cross validation

approach on classification performance. The generalisation

performance of the KNN model was determined by estimating

the average of the mean square error of training and cross

validation tests against various iterated values of k parameter.

To explore the KNN model and its role for gait features

classification, the considered dataset involves the gait patterns

of five different persons. In particular, the distribution features

of the dataset monitored during continuous walking steps were

utilised to develop the KNN model and to test classification

performance of the model. The KNN model aims for the

automatic recognition of ill-apparent (strapped) and well-

apparent (normal) gait types from their respective gait-patterns.

A. MOReS Dataset

The Movement, Occupational and Rehabilitation Sciences

(MOReS) centre at the Faculty of Health and Life Sciences

at Oxford Brookes University has provided a MOReS dataset

that includes two features groups of gait data Accelerometer

sensory (well-apparent and ill-apparent) patterns for 5 different

persons. The normal well-apparent walk represents no known

injuries or abnormalities in gait patterns, in contrast to the

stiffness represented in the ill-apparent or strapped walk.

B. Dataset Splitting

The crucial part of KNN, however, is to randomly split

dataset into training and testing sets. This is to ensure that

both sets have the even and fair distribution and that they are

independent of each other, and to provide a promising results

as to the real performance. One portion of data can be used

for fitting and evaluating on the other set, which allows an

unbiased estimation of generalisation mean error rate.

C. Cross Validation

Cross validation is a standard test, which is commonly

used to avoid biasing the data performance results and to

test the ability of the classification model depending on

several combinations of the testing and training sets. In this

process, the performance of the prediction of each gait class

is maintained by a systematic exclusion of a small portion of

gait data during the training process, whereas the excluded

gait data points can be used to test the trained model. This

cycle of data validation is repeated until each of data points

is included in the testing data set. Since the number of data

points available in gait dataset is limited to 6000 gait trials



that correspond to 5 different persons, it is vital to validate

gait data using different scales and observing the associated

error rate of each data split portion. It is important to run

MOReS dataset over different data splitting scenarios to draw

a conclusion on the accuracy of KNN classification model.

D. Measuring Mean Square Error Rate

To gauge how well the KNN classification model algorithm

works, it is a necessitate to measure the mean square error

(MSE) rate of original data samples against the predicted data

points to be able to measure how costly the predictive model

is. In practise, this means that the model well-performed when

the average error rate E reduces to minimal. The MSE can be

given by:

E =
1

N

N∑

i=1

(
yi − ŷi

)2
(4)

where yi is the original data samples (N ) and ŷi is the

predicted data points.

E. Optimal Value of K in KNN Model

As the name of KNN model suggests, it is an important

consideration to define an optimal value of k parameter in

KNN model, which defines the number of neighbours to

consider when classifying the data points and impacts the

complexity and the effectiveness of the model. Moreover, the

optimum value of the k depends on various factors, including

the size of the dataset and the distribution of data points in

their coordinates space. Also, the k variable has to be best

selected explicitly using the method of cross validation, in

order to produce a minimum rate of classification error and to

reflect on the accuracy of the KNN model.

IV. SIMULATION RESULTS

In this experiment, a 70-fold cross validation test was

applied in which 6000 gait data points were divided into

approximately 86 subsets, with a majority of 90% of data

are allocated for training whereas the remaining 10% are

included for the testing scenarios. This setup shows a minimal

test and cross validation error rates. Additionally, the optimal

value of k = 4 is observed, where the best performance of

KNN model is maintained. To reflect on the performance

metric of KNN model, the mean square error quantifiable

approach is assessed, where the percentage of unclassified

data points is averaged 100 runs over total number of training

and testing data sample sets in order to ensure that fair

results were produced. Figure 1 is an example of MOReS data

Histogram distribution of a well-apparent (normal) and an ill-

apparent (strapped) subjects. This illustrates the relationship

between normal and strapped gait patterns, grouped by their

corresponding labels. It clearly reveals some qualitative differ-

ences between these two groups, such as increased variability,

significance decrease in central tendency, and high obvious

skewness (skewed to the right) in the normal well-apparent

plots. The features experimented from Figure 1 were used to

KNN model as well as to test its capability to classify or
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Fig. 1: Pre-trained class labels associated with their medical

conditions

discriminate between the gait patterns that correspond to the 5

different data labels, which are identified as EM, IR, KH, DB,

and JC respectively. These labels are defined in this way due to

data protection rules and regulations. The prediction outcome

of the trained KNN model is shown in Figure 2. It shows that

the 2D space of predicted data is sparse enough in comparison

to that of the original data distribution. Noticeably, all label

patterns were clearly classified. Due to limited mobility of

strap walk caused by stiffness, the spread of some features

of the predicted strap walk data is remarkably clustered close

at some interval points and becomes more dense than their

counterparts of their predicted normal walk classified labels.
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Fig. 2: Predicted class labels associated with their medical

conditions

The ability of KNN model to classify the associated data

labels based on their corresponding features is depicted in

the confusion matrix of Figure 3. In this layout, the correctly

classified labels are located on the main diagonal from top left

to bottom right that correspond to the number of times the two

true and predicted class labels agree. It shows that how far the

predicted labels are deviated from their corresponding actual



average or mean values. It is also a measure of the joint vari-

ability of each data label with itself, and an indication of test

data points that have been well-classified (positive correlation)

by the model. The off-diagonal matrix elements represent the

incorrectly classified (negative correlation) test data samples

by the classifier. It is obvious that there is a strong correlation

between IR and KH data labels across the diagonal line as

well as a similar correlation in medical conditions patterns

between the other three labels. The row-normalized row of

DB EM IR JC KH

Predicted class

DB

EM

IR

JC

KH

T
ru

e
 c

la
s
s

56

27

6

25

6

12

55

11

1

20

14

6

10

12

26

6

9

57

10

9

24

21

7

90

80

47.9%

46.6%

65.7%

57.0%

62.5%

52.1%

53.4%

34.3%

43.0%

37.5%

46.7%

53.3%

55.6%

44.4%

68.2%

31.8%

52.8%

47.2%

56.7%

43.3%

Fig. 3: Confusion Matrix

the main matrix displays the percentages of true positive rates

and false positive rates for each true class, in contrast to the

column-normalized column which displays the percentages of

correctly (positive predictive values) and incorrectly classified

(false predictive rates) patterns for each predicted class. The

overall accuracy of the correct classified data patterns is

approximately 67.7%. In Figure 4, the KNN model is run

100 101 102

K Neighbours

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
e

a
n

 S
q

u
a

re
 E

rr
o

r 
(M

S
E

)

Training Set

Cross Validation Set

Testing Set

Fig. 4: MSE rates with respect to various k values

100 times for several values of k. During this setup, the cross

validation, training and testing tests were observed against

the classification mean square error is evaluated accordingly.

When the value of k > 4, the error rate increases significantly

and hence the algorithm overfits. The cross validation error

reduces to a minimum threshold when k = 4, whereas the

lowest value of the testing error is recorded when k = 10. At

this scenario of data splitting ratio, the KNN model showed

reasonably good accuracy and consistency with significant

minimum classification error rates. Both cross validation and

testing error rates have been observed at several splitting ratios

setup as seen in Figure 5.
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Fig. 5: MSE rates against different data splitting ratios
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Fig. 6: Simulation time versus various splitting ratios

The best splitting ratio is when the testing and training

sets of MOReS data divided quarterly, where the testing

and cross validation error rates become minimum as well.

It is worth noting that simulation time of the KNN model

is observed. Figure 6 illustrates that time of data training

increases gradually as the split ratio does. At the halfway scale

of MOReS data splitting, the time of the data trained reaches

the maximum peak, then it starts to decrease down. This error

bar plot of Figure 6 generates a vertical error bar plot at each

data point. The range of values in this error plot evaluates the

lengths of each error bar above and below the data points, so

that the total error bar lengths are twice in length the error

values.



V. CONCLUSION

In this paper, an automated human gait classifier based

on a robust machine learning tool, K-Nearest Neighbour is

proposed. It clearly proves that useful data gait features can

be extracted using Histogram distribution that can effectively

and automatically classify well-apparent (normal) and ill-

apparent (strapped) gait patterns. The accuracy of this model

is demonstrated by means of estimating the average error

rate between predicted and actual data patterns. The overall

performance of the KNN model was nearly around 67.7%.

This is due to significant similarity in the numerical values of

the sensory collected measurements during walking period that

were susceptible to wrong classification in the model. KNN

model has a great potential for future medical applications in

terms of identifying and predicting several health conditions.
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