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Abstract 42 

Protein limitation has been considered a key factor in hypotheses on the evolution of 43 

life history and animal communities, suggesting that animals should prioritize protein 44 

in their food choice. This contrasts with the limited support that food selection studies 45 

have provided for such a priority in nonhuman primates, particularly for folivores. 46 

Here, we suggest that this discrepancy can be reconciled if folivores only need to 47 

select for high protein leaves when average protein concentration in the habitat is 48 

low. To test the prediction, we analyzed published and unpublished results of food 49 

selection and protein concentrations from 47 studies of folivorous primates. To 50 

counter potential methodological flaws, we differentiated between methods analyzing 51 

nitrogen and soluble protein concentrations. We found that leaves containing either 52 

high concentrations of total nitrogen or high soluble protein were selected more in 53 

low protein forests. There was no relationship (either negative or positive) between 54 

the concentration of protein and fiber in the food. Overall our study suggests that 55 

protein is limiting only in protein-poor environments, explaining the sometimes 56 

contradictory results in previous studies on protein selection. 57 

 58 

Key words: primates, food chemistry, food selection, leaf-eating, nutrient 59 

requirements, protein availability 60 

 61 

INTRODUCTION 62 

Protein has been considered a major limiting factor involved in the evolution of 63 

animal communities and life history traits [e.g., White, 1993]. The need to satisfy 64 

protein requirements plays a central role in hypotheses on the evolution of 65 

morphological, physiological and behavioral life history traits (such as gut 66 

specialization, reduced metabolism in folivores, social systems linked to the 67 
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distribution of different types of food, and community composition; e.g., White, 1993). 68 

The essentials of this idea have been developed for primates by Kay [1984] and 69 

illustrated by Terborgh [1992]. Specifically, while most primates eat fruit to satisfy 70 

their energy requirements, fruits typically do not provide enough available protein for 71 

survival and reproduction, though this may not always be the case [reviewed by 72 

Klaasen and Nolet 2008; Ganzhorn et al., 2009; Schwitzer et al 2009]. Therefore, 73 

smaller-bodied species feed on insects and fruit to support their protein needs. 74 

Larger species are unable to obtain enough protein from insects because the capture 75 

rate of insects is independent of body mass [Hladik, 1978; Rothman et al., 2014]. 76 

Consequently they eat leaves, which usually contain more protein than fruit and can 77 

be found in sufficient quantities to satisfy the protein needs of a larger species. 78 

According to this scenario, within the broad constraints of body mass, protein 79 

represents the ultimate factor that determines whether a species is insectivorous or 80 

folivorous. The idea that protein is limiting has received support from the studies of 81 

Milton [1979], Oates et al., [1990] and Davies and Oates [1994 and their 82 

contributors]. Milton [1979] postulated that the densities and biomass of folivorous 83 

howler monkeys are closely related to the average leaf quality of a forest expressed 84 

as the ratio of protein to fiber (most commonly measured as acid detergent fiber – 85 

ADF) concentrations. Oates and collaborators (1990) tested and found support for 86 

this idea through a wide comparison of colobine monkeys. ADF concentrations were 87 

included because ADF should represent the refractory fraction of the cell wall 88 

(cellulose + lignin) and increasing ADF concentrations are also likely to reflect greater 89 

amounts of indigestible protein [Rothman et al., 2008]. The concept of protein to fiber 90 

ratios was extended to additional populations of colobines [e.g., Chapman et al., 91 

2002, 2004; Wasserman & Chapman, 2003; Fashing et al., 2007] and supported with 92 

independent datasets on lemurs [Ganzhorn, 1992; Simmen et al., 2012] and howler 93 
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monkeys [Peres, 1997]. The biological relevance of this ratio has been questioned 94 

based on biochemical considerations, statistical issues around the use of ratios 95 

[Wallis et al., 2012], and empirical grounds [Gogarten et al., 2012; Chapman et al., 96 

2014] but it seems to retain some predictive capacity. 97 

Restricting the considerations to protein alone, several studies have shown 98 

that protein can be limiting with lasting effects on development and lifetime fitness 99 

[e.g., Fleagle et al., 1975; Elias & Samonds, 1977; Altmann, 1991, 1998; Degabriel et 100 

al., 2009]. However, the evidence that folivorous primates actually select leaves with 101 

high protein content is ambiguous. Considering protein alone, some studies found 102 

positive selection by primates for high protein leaves [e.g., New World howler 103 

monkeys: Milton, 1979, 1998; Glander, 1981; Old World non-colobine monkeys: 104 

Beeson, 1989; Barton & Whiten, 1994; Old World colobines: Davies et al., 1988; 105 

Waterman et al., 1988; Mowry et al., 1996; Koenig et al., 1998; Yeager et al., 1997; 106 

Apes: Calvert, 1985; Lemurs: Ganzhorn, 1988, 1992, 2002; Mutschler, 1999] but 107 

others failed to do so [e.g., New World howler monkeys: Gaulin & Gaulin, 1982; 108 

Estrada & Coates-Estrada, 1986; Old World colobines: Oates et al., 1980; McKey et 109 

al., 1981; Waterman et al., 1988; Kool, 1992; Dasilva, 1994; Chapman et al., 2002; 110 

Apes: Conklin-Brittain et al., 1998; Rothman et al., 2011; Lemurs: Ganzhorn, 1988; 111 

Ganzhorn et al., 2004; Simmen et al., 2014]. Thus, we are left with the conundrum 112 

that protein is hypothesized to be an important component in primate food selection 113 

while only about half of the studies on food selection criteria demonstrate that 114 

primates actively select high protein leaves. This discrepancy can be due to 115 

methodological, ecological, or species-specific reasons, or the hypothesis may 116 

simply be wrong.  117 

On the methodological side, different studies have applied different methods to 118 

measure “protein”. While the conventional method of measuring crude protein uses 119 
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total nitrogen concentrations multiplied by 6.25 (or a species specific factor [Milton & 120 

Dintzis, 1981]) as a surrogate for protein, this measure does not actually distinguish 121 

between protein and non-protein nitrogen [e.g. N in cyanogenic glycosides, non-122 

protein amino acids, nitrates or alkaloids], or between available protein and protein 123 

bound to other components and thus unavailable for digestion [DeGabriel et al., 124 

2008; Rothman et al., 2008]. To overcome this shortcoming, some studies have 125 

analyzed total amino acids [e.g., Glander, 1981; Simmen & Sabatier, 1996; 126 

Mutschler, 1999; Curtis, 2004] or soluble protein [e.g., Ganzhorn, 1988; Koenig et al., 127 

1998; Conklin-Brittain et al., 1999; for methodological considerations see Ortmann et 128 

al., 2006; Rothman et al., 2012]. Although the selection for high protein items was 129 

more consistent in studies that analyzed soluble protein than in studies based on 130 

crude protein, none of these methods accounts for differences in protein quality 131 

(defined by essential amino acids), or digestibility [Robbins, 1983; NRC, 2003; Wallis 132 

et al., 2012; DeGabriel et al., 2014]. 133 

From an ecological perspective, the lack of positive selection for high protein 134 

items could also be explained by the assumption that primates are able to satisfy 135 

their protein requirements with a diet containing about 6.4 – 8% crude protein [NRC, 136 

2003]. The crude protein concentration of leaves and the average concentration of 137 

protein in primate foods are around or well above these requirements [e.g., Hladik, 138 

1977; Oftedal, 1991; Conklin-Brittain et al., 1998; Ganzhorn et al., 2009]. Thus, 139 

primates might not need to select high protein items but could simply feed according 140 

to the average availability of protein in the environment provided that the digestibility 141 

of protein from the food was not hindered by other components such as fiber or 142 

tannins [Mowry et al., 1996; Yeager et al., 1997; Simmen et al., 2014].  143 

Deviations from selecting high protein leaves may also be caused by species-144 

specific adaptation of gut morphology and digestive physiology [Chivers et al., 1984; 145 
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Cork & Foley 1991; Hughes, 1993; Langer & Chivers, 1994; Van Soest, 1994; 146 

Lambert, 1998; Milton, 1998, 1999; Campbell et al., 1999, 2004; Edwards & Ullrey, 147 

1999a,b; Godfrey et al., 2004]. The effect of gut physiology may be more important 148 

than the effect of body mass on dietary characteristics in primates as hindgut-149 

fermenters process food differently than foregut fermenters and both deviate from 150 

species with unspecialized digestive tracts, regardless of size. For example, 151 

Campbell et al. [2004] found that different adaptations of the digestive tract result in 152 

food passage times largely independent of body mass [see also Clauss et al., 2008], 153 

such as larger primate species with foregut fermentation (colobines) or hindgut 154 

fermentation (gorillas), and small primates with hindgut fermentation and caecotropy 155 

(e.g., Lepilemur spp.) [Charles-Dominique & Hladik 1971], or enlargement of the 156 

small intestine (Indriidae). This supports the conclusion that body mass is not a 157 

useful surrogate to understand primate feeding and digestion, including protein 158 

requirements [Lambert, 1998].  159 

Thus, in order to investigate protein selection in folivorous primates, we 160 

consider the availability of protein in the environment and test the hypothesis that 161 

protein is a limiting component and therefore primates should search for high protein 162 

and/or low fiber leaves. According to this hypothesis, selection for high protein items 163 

would not be necessary if animals could obtain enough protein from their overall diet. 164 

However, if protein concentrations in the environment are low, folivorous primates 165 

should seek high protein leaves. Therefore, we predict that selectivity for high protein 166 

leaves declines with increasing average protein content in leaves encountered by the 167 

animals in their home range. We could expect there to be an inverse relationship 168 

between concentrations of protein and fiber in foliage reflecting a maturation of the 169 

leaf ontogenetically and temporally. We also tested for this relationship and 170 
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separately tested whether fiber in the food selected differed from that of a general 171 

sample. 172 

 173 

METHODS 174 

Database 175 

The analyses presented here are based on published data from all primate 176 

radiations (except for apes; see below), supplemented by new data of folivorous 177 

primates from Madagascar, the New World and Nepal (Table 1). Analyses were 178 

restricted to forest dwelling species that have been classified as “folivores” because 179 

the majority of their food items were from photosynthetic material [Kappeler & 180 

Heymann, 1996]. As more studies are conducted, it appears that the classification of 181 

species into specific feeding guilds does not reflect the species-specific variability of 182 

diet [Hemingway & Bynum, 2005; Garber et al., 2015]. Thus, we call those species 183 

“folivores” that are supposed to derive their protein from leaves and not insects 184 

according to Kay’s [1984] hypothesis.  185 

Species that feed primarily on the leaves of grasses, bamboo (Hapalemur 186 

spp., Prolemur simus) and herbs (Gorilla spp.) were not included, as grass and herbs 187 

have different physico-chemical properties than leaves from trees, such as different 188 

lignin, a general lack of tannins and incorporation of silica in grasses [Robbins, 1983]. 189 

However, Hapalemur meridionalis from Mandena (south-eastern Madagascar) was 190 

included as these animals live in an area without bamboo and feed on grass and 191 

other leaves [Eppley et al., 2011]. For the current analysis we removed all grasses 192 

that were used as food and restricted the analysis to the proportion of their diet that 193 

consists of leaves from trees. We also included body mass in the database provided 194 

in Table I. Data for primate body mass were taken from Smith and Jungers [1997] 195 

and Mittermeier et al. [2010] and averaged between sexes.  196 
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 197 

Food Types and Nutritional Analyses 198 

Foods included in the present analysis were leaves or flower buds from trees, 199 

shrubs or vines. We further restricted the analysis  to concentrations of nitrogen 200 

(measured by the Kjeldahl method), or by a combustion procedure with subsequent 201 

analysis of elementary nitrogen (the Dumas method), or based on near infrared 202 

reflectance spectroscopy (NIRS) (calibrated against the Kjeldahl or Dumas method), 203 

soluble protein and acid detergent fiber (ADF). Data presented as “crude protein” (i.e. 204 

total nitrogen multiplied by 6.25) was re-transformed to total nitrogen concentration 205 

as the biological significance of the conversion factor is presently debated and its 206 

biological meaning is unclear (Milton & Dintzis, 1981; NRC, 2003; for methodological 207 

reviews see Ortmann et al., 2006; Rothman et al., 2012). The Kjeldahl and Dumas 208 

methods yield almost identical results (regression between nitrogen measured by 209 

Kjeldahl [y] and by the Dumas method [x] forced through the origin: y = 0.94x; R² = 210 

0.99; n = 90; Supplementary Material [Terboven, 2014]). Near infrared reflectance 211 

spectroscopy also provides accurate estimates for nitrogen concentrations when 212 

models were tested with truly independent data (Kjeldahl: y = 1.06x, R² = 0.97, N = 213 

18; combustion: y = 0.97x, R² = 0.97; N = 18; Supplementary Material).  214 

Studies that published soluble protein concentrations (measured by the 215 

method outlined by Bradford, [1976]) but without estimates of crude protein were 216 

included in the analysis, when available. However, these two datasets were analyzed 217 

separately. “Available protein” would be a more biologically appropriate measure of 218 

protein than crude protein [DeGabriel et al., 2008, 2014; Wallis et al., 2012] and 219 

probably also than soluble protein as soluble protein concentrations are correlated 220 

with available protein in some studies but not in others [Ganzhorn, unpubl.]. To date, 221 

too few data exist for available protein to allow for comparative analyses. 222 
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In primate studies, fiber concentrations are most commonly reported as acid 223 

detergent fiber (ADF). However, not all studies report exact details of the procedures 224 

(e.g. whether ADF is analyzed sequentially following isolation of neutral detergent 225 

fiber (NDF)). In addition, most studies do not specify whether ADF is reported on an 226 

ash-free basis or corrections are made for residual dry matter. Furthermore, there is 227 

little appreciation in primate literature that fiber residues can be contaminated with 228 

tannin-protein complexes [Wallis et al., 2012]. All these factors can contribute to 229 

unknown errors in the reported ADF concentrations, but how significant they are in 230 

different studies is hard to gauge and it is not possible to apply a consistent 231 

correction factor to compensate for methodological differences. We emphasize the 232 

need for rigorous analysis to avoid these uncertainties [Rothman et al., 2012]. As a 233 

result, the accuracy of the “ADF” data is likely to be low and conclusions derived from 234 

fiber concentrations should be considered with these limitations in mind  235 

All as yet unpublished chemical analyses were carried out in the laboratory of 236 

the University of Hamburg [Donati et al., 2007] (Table I). All results are expressed as 237 

% of dry matter. 238 

 239 

Insert Table I here 240 

 241 

Quality of Leaves Available in Different Forests (“representative samples”) 242 

Most measures of the availability of protein and leaf quality in different forests 243 

(here termed “representative samples”) are based on mature tree leaves. Leaves 244 

were collected opportunistically or from the most abundant tree species and were 245 

assumed to represent a proxy for year-round leaf quality [e.g., Oates et al., 1990; 246 

Ganzhorn, 1992; Chapman et al., 2002, 2004; Wasserman & Chapman, 2003; 247 

Simmen et al., 2014]. The representative samples for Semnopithecus schistaceus in 248 
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Ramnagar (Nepal) are based on mature leaves of the 25 most abundant tree species 249 

[Chalise 1995; Chalise & Koenig, unpubl.] and for Propithecus edwardsi in 250 

Ranomafana (Madagascar) on 14 tree species sampled haphazardly [Wright & 251 

Daniels, unpubl.]. 252 

Some studies collected separate representative samples for young and 253 

mature leaves [Mowry et al., 1996; Liu et al., 2013] or separate samples for the wet 254 

and the dry season [Ganzhorn, 2002]. These samples were considered as 255 

independent data points and were entered in the analyses as independent units. Our 256 

rationale is that we wanted to have some measure of leaf nutritional quality in 257 

samples of leaves that we could use for the analyses of selection of leaves 258 

consumed as food against this representative sample (see “Selection Criteria for 259 

Consumed Leaves” below). 260 

 261 

Selection Criteria for Consumed Leaves 262 

Determination of the significance of selection for specific chemical 263 

components was restricted to photosynthetic parts (leaves, sometimes differentiated 264 

in different parts of leaves). Analyses of selection were always restricted to the same 265 

types of plant parts because we wanted to know when selection occurs with respect 266 

to the representative sample. For example; if the representative sample consisted of 267 

mature leaves, then only food items consisting of mature leaves were considered. If 268 

the representative sample consisted of young leaves, then only young leaf food items 269 

were considered. If the representative sample consisted of mature leaves and the 270 

animals were feeding only on young leaves, no comparison was calculated.  271 

The data for Propithecus coronatus are based on the early dry season. 272 

During this time of the year, the diet consisted of 85-90% leaves. The chemical 273 
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analyses were based on a reconstructed diet, made by mixing aliquot proportions of 274 

each food species consumed according to its dietary proportion [Pichon, 2012].  275 

Selection criteria were taken from the original paper, or leaves that were 276 

consumed were compared with representative samples from the forest, or 277 

concentrations of chemical components were correlated with the frequency of 278 

consumption (assumed to represent the amount of leaf material ingested). Thus, p-279 

values listed in Table I and Figure 1 are based on t-tests between samples of 280 

material consumed versus the representative sample or on correlations between the 281 

frequency of consumption and the concentration of the chemical component in 282 

question. 283 

 284 

Statistical Analyses 285 

Published data are based on the analysis of a single individual per plant 286 

species or averages based on several different individuals of the same plant species 287 

or on averages weighted by the frequency of abundance or the frequency of 288 

consumption. When possible, we base our analyses on unweighted means of plant 289 

species. Surprisingly, and despite the known temporal and inter-individual variation 290 

within plant species [Ganzhorn & Wright 1994; Chapman et al., 2003], the variation 291 

between weighted and unweighted samples seems to average out in large samples 292 

(Table II). Statistical tests were made with SPSS 21.0. 293 

 294 

Insert Table II 295 

 296 

RESULTS 297 

Selection of Leaves in Relation to the Average Concentrations of Nitrogen, 298 

Soluble Protein or ADF in a Given Forest 299 
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Measures of nitrogen, soluble protein and ADF in representative samples of 300 

plant leaves were found for 19, 18 and 33 studies, respectively (Table I). 301 

Concentrations of the same components in food plants were found for 35, 22 and 41 302 

studies. The data for soluble protein were unevenly distributed in the dataset, and 303 

were mainly available for foods of lemurs. Studies of the same species in different 304 

areas or during different times of the year were treated as independent units since 305 

the concentrations of chemical components vary significantly between sites and 306 

seasons. 307 

Selectivity for leaves containing high concentrations of nitrogen increased 308 

significantly with declining nitrogen concentrations in forests (rs = 0.62, P = 0.008, N 309 

= 17; Figure 1; Table I). Restricting the correlation to the Colobinae does not alter the 310 

principal result but removes significance (rs = 0.51, P = 0.075, N = 13). 311 

For soluble protein data, selection of high protein leaves was stronger in 312 

forests with low concentrations of soluble protein in representative samples of leaves 313 

than in forests with high concentrations (rs = 0.66, P = 0.004, N = 17). Removing 314 

Semnopithecus schistaceus from the correlation (the only species for which soluble 315 

protein data are available for representative samples of leaves outside Madagascar; 316 

thus restricting it to lemurs) does not change the result (rs = 0.66, P = 0.005, N = 16).  317 

Combining the data for the two measures of protein and including the type of 318 

protein analysis as a random categorical variable in a GLMM results in a highly 319 

significant effect of the concentrations of protein in representative samples of leaves 320 

on the strength (significance) of selection (F = 21.58; P < 0.001).  321 

There was no relationship between concentrations of nitrogen or soluble 322 

protein and fiber in the data set. There were no significant correlations between the 323 

selection (or rather discrimination) against ADF and the ADF in representative 324 
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samples, either over all the data (rs = 0.12, P = 0.534, N = 31), or when considering 325 

various primate radiations separately.  326 

 327 

Insert Figure 1 328 

 329 

DISCUSSION 330 

The present analysis sought to better understand the discrepancy between the 331 

findings of some studies that identify protein as a limiting resource, including those 332 

that focus on non-human primates [Kay 1984] and others that find no evidence for 333 

this phenomenon. Primates (and animals in general) need to satisfy their protein 334 

needs by selecting protein-rich food, but we found that many primatological studies 335 

failed to demonstrate such a selection for high protein food (Table I). A number of 336 

studies have pointed out that selection of high protein food would only be required if 337 

the food items in the environment have average protein concentrations below the 338 

required needs [e.g., Mowry et al., 1996; Yeager et al., 1997; Ganzhorn et al., 2009; 339 

Simmen et al., 2014] and that, once protein concentrations are above requirements, 340 

selection could be based on other components and criteria, such as the availability 341 

within the environment [e.g., Oftedal, 1991; Fashing et al., 2007] or secondary plant 342 

chemicals [Moore & Foley 2005] or minerals such as sodium [Rothman et al 2006]. 343 

While this idea has been around for some time, it has rarely been tested [Marsh et 344 

al., 2014; Jensen et al., 2015]. Studies started to focus instead on long-term nutrient 345 

budgets and nutrient balancing using the conceptual approach of geometric 346 

frameworks [e.g., Felton et al., 2009; Rothman et al., 2011; Johnson et al., 2013; 347 

DeGabriel et al., 2014; Irwin et al., 2014], on new methods on how to measure 348 

protein that is actually available [DeGabriel et al., 2008], or on an understanding of  349 

other confounding variables [Wallis et al., 2012], Our results illustrate that primates 350 
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select for high protein leaves especially in situations where the average protein 351 

content of leaves in a forest is low. No such correlation was found with respect to 352 

fiber concentrations. Thus, it appears that protein is limiting for folivorous primates 353 

under certain conditions, but clearly not in the majority of tropical forests studied. In 354 

contrast, we found no evidence of either an expected inverse relationship between 355 

protein and fiber concentrations in food or indeed any evidence that animals were 356 

selecting against fiber. We cannot judge whether there is a significant effect of 357 

methodology on this result but it is clear that fiber is analyzed inconsistently in 358 

primatological studies with little regard to the effects of ash, tannins or other 359 

interfering substances [Makkar & Singh 1995; Wallis et al., 2012] 360 

Our comparative study also indicates a fundamental problem of field studies 361 

on food selection. Animals are most frequently studied where they occur in high 362 

densities. These are probably the best areas for survival and reproduction with high 363 

quality food availability. Under these conditions, it is probably hard, if not impossible, 364 

to identify factors that are actually limiting. Having enjoyed considerable time in 365 

forests with plentiful animals, it may be an unfortunate conclusion, but in order to find 366 

out what limits primates, researchers will likely need to turn their attention to regions 367 

where animals are naturally scarce (e.g. Stalenberg 2015). 368 
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Tables 703 

TABLE I. Nitrogen, soluble protein and acid detergent fiber (ADF) concentrations in 704 

leaves eaten by folivorous primates and in “representative samples” of leaves (RS) in 705 

a given forest. “P” indicates significance of selection for high protein or low ADF 706 

concentrations. 707 

 708 

TABLE II. Comparison of the concentration of chemical components in leaves based 709 

on measures of several individuals of the same plant species and on the mean per 710 

plant species. Values are means ± standard deviations; N = sample size. Data on 711 

Propithecus edwardsi from Arrigo-Nelson (2006; unpubl.) based on mature leaves; 712 

data on P. candidus from Patel [2012; unpubl.], restricted to leaves of species 713 

identified unambiguously. 714 

 715 

 716 
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Figure captions 718 

 719 

Fig. 1. Significance values for the selection of leaves in relation to the average 720 

concentrations of nitrogen (upper graph), soluble protein (middle graph) and ADF 721 

(lower graph) in leaves available in different forests. Dots are lemurs, squares are 722 

Old World Monkeys (Colobinae) and triangles are New World monkeys (Alouatta 723 

spp.).  724 
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