
Bias Detection in Histology Images Using 

Explainable AI and Image Darkness 

Assessment 

Inna SKARGA-BANDUROVAa,1, Golshid SHARIFNIAa, and  

Tetiana BILOBORODOVAb 
a Oxford Brookes University  

b
 G.E. Pukhov Institute for Modelling in Energy Engineering 

ORCiD ID: Inna Skarga-Bandurova https://orcid.org/0000-0003-3458-8730, Golshid 

Sharifnia https://orcid.org/0000-0002-0993-9458, Tetiana Biloborodova 

https://orcid.org/0000-0001-7561-7484 

Abstract. The study underscores the importance of addressing biases in medical AI 

models to improve fairness, generalizability, and clinical utility. In this paper, we 

present a novel framework that combines Explainable AI (XAI) with image 
darkness assessment to detect and mitigate bias in cervical histology image 

classification. Four deep learning architectures were employed—AlexNet, ResNet-

50, EfficientNet-B0, and DenseNet-121—with EfficientNet-B0 demonstrating the 
highest accuracy post-mitigation. Grad-CAM and saliency maps were used to 

identify biases in the models’ predictions. After applying brightness normalisation 

and synthetic data augmentation, the models shifted focus toward clinically relevant 
features, improving both accuracy and fairness. Statistical analysis using ANOVA 

confirmed a reduction in the influence of image darkness on model predictions after 

mitigation, as evidenced by a decrease in the F-statistic from 120.79 to 14.05, 
indicating improved alignment of the models with clinically relevant features.  
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1. Introduction 

Artificial intelligence (AI) has become integral to modern healthcare, particularly in 

diagnostic imaging, where it assists clinicians in analysing large volumes of data quickly 

and accurately [1]. However, despite these advancements, the potential for bias in AI 

models remains a significant concern, particularly when models are trained on biased 

datasets. Bias in medical datasets can arise from several factors, such as variations in 

data acquisition techniques, image quality, or under-representation of certain classes 

within the dataset [2,3]. These biases can manifest in AI models, leading to poor 

generalisation, skewed predictions, and, ultimately, suboptimal patient outcomes. For 

instance, in the case of histology images, differences in staining intensity, tissue 

preparation techniques, and image brightness or darkness across institutions can 

introduce biases that cause the model to misclassify them [4]. Thus, understanding the 

model’s behaviour could reveal that it is paying more attention to darker or brighter 
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regions that are artefacts rather than diagnostic features. Explainable AI (XAI) offers a 

potential solution to this problem by providing insights into the model’s decision-making 

process. While XAI methods have traditionally been used to make AI predictions more 

interpretable, combining them with darkness analysis could highlight how the model's 

predictions are influenced by poor image quality to improve robustness. This idea is 

justified by broader research on XAI and image quality biases [5] along with the colour-

based computations [6].  

This study presents a novel framework that combines image darkness assessment 

with XAI to detect and mitigate bias in cervical histology image classification. By 

assessing image quality variations and identifying biased patterns in the model’s 

predictions, this approach ensures that the model focuses on clinically relevant features 

rather than irrelevant artefacts. Through this approach, we aim to enhance the fairness, 

transparency, and generalizability of AI models in medical imaging, ensuring they 

deliver reliable and unbiased outcomes in clinical practice. The key contribution of this 

work lies in the use of XAI not only as a post-hoc interpretability tool but also as a 

proactive method for identifying and addressing dataset biases.  

2. Methods 

The dataset [7] used in this study consists of cervical histology images labelled into four 

categories: norm, CIN1, CIN2, and CIN3. These images were captured from different 

institutions, introducing inherent variability in staining intensity and image quality. To 

account for this, the dataset was pre-processed and divided into a training set (80%) and 

a testing set (20%). Data augmentation techniques, including random rotations, colour 

jittering, and horizontal flipping, were applied to the training set to simulate variations 

in staining and improve the model’s ability to generalise. The images were also resized, 

centre-cropped, and normalised to ensure consistency during training.  

Four deep learning architectures were selected for this study: AlexNet [8], ResNet-

50 [9], EfficientNet-B0 [10] and DenseNet-121 [11]. The first two architectures were 

chosen due to their proven success in image classification, with ResNet-50 offering 

deeper feature extraction capabilities through its residual connections. EfficientNet-B0 

was chosen as the primary model due to its compound scaling approach, which balances 

depth, width, and resolution, allowing the model to achieve higher accuracy with fewer 

parameters. DenseNet-121 was selected because of its dense connectivity between 

layers, which promotes better gradient flow and prevents overfitting, making it ideal for 

handling imbalanced datasets. All models were initialised using pre-trained weights from 

ImageNet, enabling transfer learning. Fine-tuning was applied to the final layers to adapt 

the models to the histology classification task, modifying the output layers to align with 

the four classes. AlexNet and ResNet-50 models were trained for 24 epochs using a batch 

size of 32, with a starting learning rate of 1e-4. A learning rate decay was applied every 

10 epochs to avoid overfitting. The final fully connected layers of EfficientNet were 

replaced with new layers specific to the CIN classification task. Early stopping was 

applied to prevent overfitting during training.  In DenseNet, the last few layers were fine-

tuned, and dropout layers were added to reduce overfitting by randomly dropping 

neurons during training.  To understand how the models made decisions and to identify 

potential biases, two explainability techniques were utilised: Grad-CAM and saliency 

maps. Grad-CAM was employed to generate heatmaps that visualise the regions of the 

image the model deems most important for predictions. It allows for visually inspect 
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whether the model focuses on pathologically relevant features or irrelevant artefacts.  

Saliency maps were used to provide a more granular view of the model’s decision-

making process to identify biases at the pixel level. 

A key component of this study is the assessment of image darkness as a potential 

source of bias. Since staining intensity varies between institutions, we hypothesised that 

the models might rely on image darkness to differentiate between CIN grades rather than 

clinically relevant features. Each histology image was first converted to grayscale, and 

the average pixel intensity was calculated to determine the darkness value. This value 

was then used to assess the relationship between image darkness and the predicted CIN 

class. The combination of XAI and image darkness analysis was used to detect whether 

the model's decisions were influenced by non-pathological factors, such as overly dark 

regions caused by staining inconsistencies. Once biases were detected, additional data 

augmentation techniques were employed to mitigate them. Images were normalised to a 

consistent brightness range to reduce the influence of staining intensity. Synthetic images 

with varied staining intensities were generated to teach the model to focus on relevant 

tissue features independent of darkness or brightness artefacts. 

To assess the relationship between image darkness and the predicted CIN class, a 

one-way analysis (ANOVA) was used, where the predicted class served as the dependent 

variable, while image darkness (average pixel intensity) was the independent variable. 

This allowed us to determine whether variations in image darkness affected the model's 

predictions, thereby indicating potential bias. A significant association suggests the 

model might be relying on artifacts instead of focusing on clinically relevant structures.  

The performance of the XAI techniques was qualitatively evaluated by pathologists, 

who assessed whether the heatmaps and pixel-level explanations highlighted clinically 

significant areas of the histology images (e.g., nuclear abnormalities).  

3. Results 

3.1. Baseline Model Performance  

All four models were trained and evaluated on the cervical histology dataset prior to any 

bias mitigation. EfficientNet-B0 demonstrated the highest overall accuracy at 88%, 

surpassing the AlexNet architecture, which achieved 80% accuracy, also being less 

effective at classifying CIN1. ResNet-50 and DenseNet-121 performed similarly, 

achieving 86% and 87% accuracy, respectively, with high precision and recall, 

particularly for CIN2 and CIN3 classes, indicating their ability to accurately distinguish 

between higher-grade lesions.  

3.2. Explainability Insights 

Visualisations produced by Grad-CAM (Fig. 1 (d)) revealed that all four models tended 

to focus on darker regions in certain images, particularly in the CIN1 and CIN2 classes. 

This suggests that the models may have relied on variations in staining intensity rather 

than relevant tissue structures. Saliency maps further confirmed this finding, showing 

that dark regions were disproportionately influencing the model’s decisions. The models 

focused on non-pathological features (artefacts caused by inconsistent staining) in some 

instances rather than morphological features indicative of CIN stages. Fig. 1 (a), (b) show 

that the model identified cell nuclei as the elements most responsible for the severity of 
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the degree, while (c), and (d) show that the model also identifies tissue artefacts and areas 

of more intense colour as highly relevant. 

  

 

  
(а)  (b) 

  

 

  
(c)  (d) 

Figure 1. CIN images converted to grayscale and corresponding saliency maps (a)-(c) and Grad-CAM (d). 

3.3. Image Darkness and Bias Detection 

The grayscale conversion and subsequent darkness value calculation revealed significant 

variability in the average pixel intensity across the dataset. This variability was 

associated with the model predictions, particularly for the CIN1 and CIN2 categories, 

which exhibited the highest variance in darkness. The ANOVA results revealed a 

statistically significant effect of image darkness on CIN model predictions (F-

statistic=120.79, p=2.475e-40). This indicates that the mean image darkness differs 

significantly across CIN classes, suggesting that image darkness is influencing the 

model's predictions. Such reliance on image darkness, rather than solely on clinically 

relevant histopathological features, confirms the presence of bias due to variations in 

staining intensity. 

3.4. Bias Mitigation Results 

After detecting the biases, several bias mitigation techniques were applied, including 

brightness normalisation and data augmentation (introducing synthetic staining 

variations). The models were then retrained on the updated dataset, and their 

performance was reassessed. EfficientNet-B0 achieved the highest accuracy post-bias 

mitigation, with an increase from 88% to 91%. The F1-score for the CIN1 and CIN2 

categories showed the most significant improvement, confirming that the model was no 

longer overly reliant on staining intensity variations. ResNet-50 and DenseNet-121 also 

showed improvements in both accuracy and recall, with ResNet-50 increasing from 86% 

to 88% and DenseNet-121 increasing to 88%. These results demonstrate the robustness 

of these models after mitigating the impact of image quality biases.  

3.5. Explainability Insights and Reduction in Image Darkness Bias 

The Grad-CAM heatmaps produced after applying brightness normalisation showed a 

significant shift in the model’s focus. The models concentrated more on clinically 
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relevant regions, such as cell nuclei and epithelial structures, rather than on dark staining 

artefacts. Similarly, the saliency maps revealed a more even distribution of pixel 

importance, with reduced reliance on darkened regions of the images. A second ANOVA 

test confirmed that the association between image darkness and the predicted CIN class 

had significantly diminished after bias mitigation (F-statistic=14.05, p=0.031). This 

demonstrates that the models relied less on staining artefacts to make predictions and 

instead focused on histopathology-relevant features. Analysis of the variance in model 

predictions before and after image normalisation showed that the bias mitigation 

strategies significantly reduced the variance for the CIN1 and CIN2 classes, confirming 

a reduction in model over-reliance on non-pathological features. 

4. Discussion and Conclusions 

The study introduced a novel framework for detecting and mitigating bias in cervical 

histology image classification using a combination of XAI with image darkness 

assessment. The goal was to ensure that AI models focus on clinically relevant features, 

such as nuclear abnormalities and epithelial structures, rather than irrelevant artefacts 

introduced by staining variations or image darkness. The results demonstrated that the 

models were influenced by non-pathological features such as staining intensity, 

particularly in the CIN1 and CIN2 categories. After applying data augmentation and 

brightness normalisation, the models' focus shifted towards more relevant anatomical 

features. The ANOVA tests further confirmed a reduction in the influence of image 

darkness on model predictions post-mitigation, with the F-statistic decreasing from 

120.79 to 14.05. This indicates that the models were less reliant on staining artefacts and 

better aligned with clinically relevant features. 
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