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Summary. Over the last couple of years, it can be said that the focus of the computational
aspects of neurons has moved from synaptic weight and firing rate encoding to temporal firing
encoding. On the other hand, several elements of these models have been based on some concep-
tual assumptions that imply relative simple dynamic behaviour of neuronal membrane activity
in an active-passive process. In line with recent advances that have produced a better under-
standing of the biochemical processes that occur within cells, it is proposed that the processes
that are involved in a membrane depolarisation cascade are less static than have been assumed
so far. In particular, the possibilities of low level computation at the membrane level need to be
explored more extensively. In this chapter some computational properties of the spike generation
processes are explored using phenomenological models.
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25.1 Introduction

The limited dynamic behaviour that exists within models currently studied for spike
generation is partly due to the fact that little is known about the low level interaction
of the components that generate the depolarisation cascade. Even though it has been
known for a long time that the ionic channel dynamics is voltage gated as well as gated
by other mechanisms, the interaction between different transmembrane components
and intracellular processes is less well known [1, 7]. This may, in part, be attributed
to the difficulty of measuring accurately the exact state of individual channels and the
difficulty of acquiring information about the subcellular processes that are involved in
the spike generation cascade of living cells. The construction of theoretical models of
these channels has already produced a large body of knowledge about the conductance
behaviour of ionic channels. This knowledge is, however, limited by the underlying
assumptions of the models. The stable state of most conductance models, such as the
well-known Hodgkin–Huxley system, does not include further dynamical aspects be-
yond mere responses to global changes in voltage. By developing abstract models of
more complex systems with the specific aim to produce systems that are capable of
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some level of computation and comparing the performances with biological systems,
a much more detailed understanding of the possible processes may be reached.

25.2 Membrane Elements as Computational Units

To achieve a better understanding of the processes involved in the possible computa-
tions performed at the molecular level in the neuronal membrane, a membrane com-
putational unit can be defined. A membrane computational unit (MCU) is formed by
a collection of ionic channels and other transmembrane proteins that contribute to the
formation of a single depolarising spike in a neuronal membrane at that point. The
composite elements are not evenly distributed nor is it assumed that they are all in a
similar state. Indeed, these states may be responsible for a localised mechanism that
may be capable of some types of computation. The advantages of such mechanisms
are extensive. A combination of localised membrane-specific computation and global
computational activity of the entire neuron will allow a staggering amount of process-
ing elements. Furthermore, each MCU does not have to be specifically defined but can
be organised in response to local dynamic behaviour.

Local state changes of the complex interactions of membrane depolarising units
have not been considered to be very relevant in the overall theory of neuronal com-
putation. Indeed, an emphasis appears to exist to reduce the membrane components
of an electrically active cell to mere conductive elements with the computation solely
provided by intercellular communication [1]. This model of cellular activity is based
on single and population channel dynamics in an enforced fixed state. However, if one
considers that the interaction of all the channel proteins are of an extremely complex
nature, as can be derived from the rest of the biochemical pathways [2], it appears to
be more likely that localised states and state-induced processing are not only possible
but functional.

The biophysical structure of the membrane may be described as a mosaic of ionic
channels and other membrane-bound proteins. The biophysical organisation of the
neuronal membrane mosaic determines the properties of the membrane, such as con-
ductance [3]. This is depicted schematically in Fig. 25.1 where the octagons represent
an ionic channel organisation and the circles molecules that are capable of inducing
adaptation. In a static model environment, the adaptation may cause the global neu-
ronal behaviour to change in response to a depolarisation input current. In a temporal
and spatially dynamic model the localised adaptation may cause the local environment
to change in response to local and global effect. This includes both local adaptation as
activity-induced adaptation of the membrane mosaic (Fig. 25.2 and 25.3).

The conductance models, as currently used in systems of computational neurons,
are generally based on the original models (or variations of it) as defined according
to the Hodgkin–Huxley dynamics [6, 15]. This describes each ionic channel as a con-
tinuous state variable whose dynamic behaviour in time is described by first-order
kinetics. Each channel equation has an increasing term and a decreasing term of the
conductance dependent state variable n, e.g., dn/dt = αn(V ) × (1 − n) − βn(V ) × n.
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Fig. 25.1. The biophysical
mosaic.

Fig. 25.2. Local response
of conductive elements in
presence of adaptation.

Fig. 25.3. Activity-induced
adaptation in nearby con-
ductive elements in a bio-
physical mosaic.

The activation and inactivation rate functions αn(V ) and βn(V ) were then experimen-
tally determined by varying the voltage. The resulting equations were subsequently
derived from the experimental data set by fitting elementary arithmetical operations as
functions of the voltage. There are several assumptions made within this model that
may now be considered to be too unassuming.

The possible states of the ionic channels can be primarily determined by the con-
ductance but the existence of additional states is not impossible. It could be considered
that other states, such as a blocked state, are part of the normal state transitions that oc-
cur. The kinetic dynamics of the molecular interactions are rarely of first order within
other biochemical reactions and this may be recognised by considering the subdo-
mains and co-proteins of the ionic channel as part of the kinetic equation. The rate
of opening and closing as described by the α(V ) and β(V ) functions only describes
the channel dynamics but does not explain the mechanisms by which these dynamics
have emerged. Furthermore, the functions, as currently used to describe the spike gen-
eration process, are incapable of exhibiting other dynamics than fixed state dynamics
(by external periodic forcing and similar mechanisms, some more complex dynamic
behaviour of the voltage may be produced but these do not change the stable state of
the Hodgkin–Huxley system itself).

It can be argued that the localised dynamics exist by virtue of the biochemical
processes involved. In other words, the enzymatically controlled chemical reactions
and the membrane processes controlled by secondary and tertiary molecular structural
changes do allow more complex dynamics to occur. The observation of noisy oscilla-
tions is not precluded by this assumption. It may also be considered that if the highly
controlled processes that can be found in the biochemical pathways were not present in
the proteins involved in the formation of the depolarisation cascade, they would form
a complete separate part of the entire biochemical system. An uncontrolled and noisy
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process, such as the depolarisation cascade, is simply not energetically favourable if
by controlling the process, energy can be saved. The next step in process control, in
the sense of allowing some depolarising currents to result in a spike or of blocking
such currents locally, seems to be a mere optimisation of the complete controlled pro-
cess. True localised computation may then follow readily and it can then be possible
to define a spatially and dynamically bound unit which forms the minimally required
computational element or MCU.

Ideally, one would like to describe all processes and molecules involved at the bio-
physical level and study the system using the physical properties of those processes.
The complexity of such a modelling system is of very high order and, by assuming
that the underlying computational process is not dependent on unique physical cir-
cumstances, the use of more phenomenological models is justified with the aim of
understanding what is required to achieve some particular computational process.

25.3 Membrane Computational Unit Model

With the aim of simulating computational processes within an MCU, several bio-
logically relevant phenomenological models are combined. Each model of an MCU
has at least two different components that act together to produce a system which is
capable of complex emergent behaviour. One is a spike generation component and
the other a controlled chaotic drive component. The spike formation component has
been derived from the Hindmarsh–Rose (HR) model [5] but includes a fourth slow
recurrent equation which represents the slow calcium exchange between intracellu-
lar stores and the cytoplasm [10]. This makes the modified HR model more like a
chaotic Hodgkin–Huxley (HH) model of stomatogastric ganglion neurons [10]. The
four-dimensional HR can therefore be accurately interpreted as a phenomenologi-
cal model of the conductance-based HH model. The parameter values for the four-
dimensional Hindmarsh–Rose (HR4) model are a = 1, b = 3, c = 1, d = 1, e = 1,
f = 5, g = 0.0275, u = 0.00215, s = 4, v = 0.001, k = 0.9573, r = 3.0, m = 1,
n = 1 and rest potential x0 = 1.605. The variable I represents the input to the unit
which can be external square input pulses or input from other units. With these param-
eter values the model is stable in the resting potential but shows low dimensional chaos
in the bursting patterns [10].

d x
d t

= a y + b x2 − c x3 − d z + I (25.1)

d y
d t

= e − f x2 − m y − g w (25.2)

d z
d t

= u (s (x + x0) − n z) (25.3)

d w

d t
= v (r(y + l) − k w) (25.4)

It is also possible to add another inactivation current which competes with the
third current to return the system to the equilibrium state. The third equation of the
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HR4 model (25.3) is then complemented with a fifth equation resulting in the five-
dimensional Hindmarsh–Rose model HR5. The effect of the faster inactivation current
z f (25.8), compared to the slower inactivation current as used in HR4, is that the sys-
tem tends to burst less. The faster current makes the system return faster towards the
equilibrium where only a larger (re)activation current can cause the system to burst. In
the MCU model, the HR5 system allows the temporal separation of spikes by increas-
ing the refractory period. Parameter values for (25.8) are s f1 = 8, s f2 = 1, n f = 4 and
the parameter d f = 0.5 in (25.5). The parameters ss = 4 and ns = 1 have the same
value as the equivalent parameters in (25.3).

d x
d t

= a y + b x2 − c x3 − ds zs − d f z f + I (25.5)

d y
d t

= e − f x2 − m y − g w (25.6)

d zs

d t
= u (ss (x + x0) − ns zs) (25.7)

d z f

d t
= u ((s f1 (x + x0) − s f2 x2) − n f z f ) (25.8)

d w

d t
= v (r(y + l) − k w) (25.9)

Connecting these HR models will result in different types of behaviour, such as
stable periodic and chaotic synchronised and unsynchronised behaviour [10]. These
depend on continuous, relatively large, inputs to the model. It is possible to make
continuous connections of HR4 models that change the chaotic spike bursting into slow
oscillations [12]. However, the system need not be purely chaotic to make use of some
of the properties of chaotic systems, such as control and synchronisation. A controlled
chaotic system is a system which is inherently chaotic but is limited to a controlled state
such that the resulting dynamic behaviour is indistinguishable from periodic behaviour
[14]. For some types of control, such as rate control and Ott–Grebogi–Yorke (OGY)
control [8, 14], the chaotic system is only perturbed into the unstable periodic orbit
during very small periods of its evolution. Outside the control period, the controlled
system is still capable of synchronisation [9]. This feature allows the use of a stable
controlled period generated by a controlled chaotic system to synchronise to another
system even if they have different periods.

To introduce the required controlled chaotic behaviour in either of the HR models,
a scaled and inverted Rössler system has been used [13]. This is necessary because the
normal Rössler model has a different time scale from the HR4 model. As can be seen
in Table 25.1, the scaled variables are proportional to the normal Rössler parameter
values. It is possible to map the time scale of the modified Rössler (R3) model to fit
the time scale of the HR4 model and use the R3 system to generate patterns. In addition
to the scaling, the ur variable has been inverted to enable the convenient use of this
variable as the drive for the HR4 model.

d xr

d t
= −br yr − dr ur (25.10)
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Table 25.1. Scaled parameter values compared to normal Rössler model values.

Parameter Normal value Scaled value

ar
1
5

1
75

br 1 1
15

cr 1 1
15

dr 1 1
50

kr 5.7 −0.57

wr
1
5 − 1

75
pr 1 −1

d yr

d t
= cr xr + ar yr (25.11)

d ur

d t
= pr ur xr + kr ur + wr (25.12)

The R3 system is controlled into an unstable periodic orbit using a chaotic rateAU: Why mix deci-
mals and fractions in
Table 25.1?

control mechanism [8]. This mechanism allows the system to exhibit different periodic
orbits by limiting the rate of change of equation (25.12). The rate control variable σ

is only different from 1 if the variables x and u are diverging rapidly, i.e., when the
chaotic manifold is stretching or folding. Equation (25.12) is modified to (25.14) as
shown below. The rate control parameter µ determines the strength of the rate limiting
function and the parameter ξ can have different values but is usually −2 ≤ ξ < 0. This
chaotic control mechanism is very effective at stabilising different unstable periodic
orbits, but not for any given value of µ and ξ . Typically used values are µ = 6 and
ξ = −1 or ξ = −2.

σ(x, u) = e

ξ(xu)

(u + x + µ) (25.13)
d ur

d t
= σ(xr , ur ) pr ur xr + kr ur + wr . (25.14)

The controlled chaotic system is now connected to the four-dimensional Hindmarsh–
Rose system via the HR4 z variable. Equation (25.3) is subsequently modified to be-
come

d z
d t

= u (s (x + x0) − q ur z). (25.15)

Because the ur variable of the scaled Rössler R3 system is always negative, the
parameter q in equation (25.15) is negative: q = −12.

Finally, different HR-type systems may be connected electrically by summation of
the two main currents. It is possible to extend this to all currents but this does not seem
to have a significant effect on the qualitative behaviour of the two connected systems.



25 Low Level Computation in Membrane Units 283

By adding the total differences in activity of the HR models’ x and y variables as
follows, depending on the choice of α, different dynamic behaviour will result:

Ii (x) = αi (x)
∑

j
(x j − xi ) (25.16)

Ii (y) = αi (y)
∑

j
(y j − yi ). (25.17)

For example, for α(x), α(y) > 0 the resulting HR system will act as a logical AND
of the input spikes. With α(x) = 0 and α(y) > 0, the resulting HR system acts as an
AND-NOT gate, i.e., it is only active if one of the inputs has produced a spike but not
if both spike together and not if only the other input has a spike. This may be used to
detect both coincidental spikes as well as single spikes from one source only.

25.4 SyncMCU

The different computational elements described may be combined to construct an en-
semble of computational elements capable of solving computational problems. For
example, consider Fig. 25.4 where five computational units are linked. Here, units
HR4R3-1 and 2 are made from four-dimensional HR systems, driven by a controlled
scaled Rössler system R3. Unit HR5-AND consists of a single HR5 system, with-
out a controlled chaotic drive, but electrically connected to units HR4R3-1 and 2
using (25.16) and (25.17) with α(x), α(y) > 0. Unit HR4-ANDNOT consists of a
four-dimensional HR4 system but with a scaled R3 drive. It receives input from units
HR4R3-1 and 2 but with α(x) = 0 and α(y) > 0. Lastly, unit HR4 is a normal HR4
system without an R3 drive, that only receives input from unit HR5-AND. All the R3
drive systems are controlled in the same unstable periodic orbit but the driving scalar

Fig. 25.4. Schematic representation of the SyncMCU model.
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is small such that by itself it does not cause the system to fire. The R3 systems may
therefore act as a localised subcellular clock that can be in or out of sync with other
units.

The configuration shown in Fig. 25.4 may act as a detector of desynchronisation
of two input signals. Given an additional external input to the units HR4R3-1 and 2,
which are combined in unit HR5-AND and then passed on to unit HR4, the unit HR4-
ANDNOT will detect if unit HR4R3-2 fires but HR4R3-1 does not. Note that if they
both fire, HR4-ANDNOT does not fire unless it has fired recently. We can now use
this to attempt to synchronise unit HR4R3-2 with unit HR4R3-1 even if they have
completely different periods.

To enable unit HR4-ANDNOT to synchronise the units HR4R3-1 and 2, a syn-
chronisation function is defined as

d S
d t

= κ1(x1
r − x2

r )θ(x) − κ2S, (25.18)

where κ1 and κ2 are the growth and decay parameters, and xn
r are the xr variables of

the controlled chaotic scaled Rössler systems of the units that are synchronised. The
function θ(x) is a threshold function on the x variable of the HR4 system of the unit
HR4-ANDNOT. Parameters for (25.18) are κ1 = −0.75, κ2 = 0.5 with the threshold
set at −0.5.

25.5 Results

In Fig. 25.5 and 25.6 can be found the results of the SyncMCU model. The model is
integrated using different time steps and verified with several numerical integrators,
such as the fifth-order Runge–Kutta and Prince–Dormand Runge–Kutta integrators,
which all produced qualitatively similar results. Because the model cannot start from
an a priori established initial stable state, the model is run for 5000 time steps without
chaotic control to allow the Rössler model to reach the domain of its strange attractor.
At time step 5000, the chaotic control is enabled, resulting in subthreshold activity
which ensures that the model is in a stable periodic orbit before external input is pre-
sented. At time step 10000, the external input is enabled which generates pulses of
width 10 with period 290 for HR4R3-1 and period 400 for HR4R3-2.

In both Fig. 25.5 and 25.6, the x variables of HR4R3-1 and 2 are shown for the
first 25000 time steps only. This enables the period, due to the combined effect of the
controlled chaotic drive and the external input, to become visible. They are verified to
continue in the same multiorbit for very long runs. As can be seen in Fig. 25.5(c) and
(d), in the unsynchronised case, units HR5-AND and HR4-ANDNOT show spiking
patterns at the combined harmonic input periods. Because the system is responding to
the effects of the external input combined with its internal controlled chaotic drive, the
emerging patterns appear fairly noisy.

In the synchronised case, as shown in Fig. 25.6(c) and (d), the emerging patterns are
corrected by the synchronisation pulses shown in 25.7(b) on the internal unit controlled
chaotic drive, and the patterns are much less noisy than in the unsynchronised case. By
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(a) Evolution of x variable of HR4R3-1. (b) Evolution of x variable of HR4R3-2.

(c) Evolution of x variable of HR5-AND. (d) Evolution of x of HR4-ANDNOT.

Fig. 25.5. SyncMCU model without synchronisation.

superimposing the synchronised and unsynchronised unit HR4-ANDNOT in Fig, 25.7
(a) the extent of synchronisation correction becomes more clear, indicating that the
correction made by the synchronisation function is effective even though the periods
of the external input patterns are very much different.

25.6 Conclusion

Using a combination of phenomenological models, it may become possible to study
computational aspects of neuronal membrane functions. The computational aspects
that can be modelled using the MCU paradigm can give indications of biophysical
features that may be hidden from the experimentalist at this moment. It can also ex-
tend the computational ability of neural and neuronal networks by more distributed
computation and the use of simple computational steps to perform important signal
processing functions.

The synchronisation model is based on the synchronisation capabilities of the con- AU: Is the subtitle
“(c)” in Fig. 6 OK as
changed?
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(a) Evolution of x variable of HR4R3-1. (b) Evolution of x variable of HR4R3-2.

(c) Evolution of x variable of HR5-AND. (d) Evolution of x of HR4-ANDNOT.

Fig. 25.6. SyncMCU model with synchronisation.

trolled chaotic internal drive. Even though the underlying internal drive is based on a
scaled chaotic Rössler model, the resulting system is stable periodic due to the control.
The emergent behaviour of the model is due to the interaction of the different periodic
external inputs to HR4R3-1 and HR4R3-2 with the stable periodic controlled drive
which is summed in HR5-AND and filtered through HR4-ANDNOT, resulting in a
synchronisation pulse to HR4R3-2. This, finally, causes the internal controlled drive to
synchronise to the difference between the inputs to HR4R3-1 and HR4R3-2. Introduc-
ing white Gaussian noise in the external input frequencies does not prevent the system
from synchronising although more correcting synchronisation pulses are needed (not
shown).

Results from conceptual models as presented may provide indications to identify
localised computation in the neuron. Recent experimental results in the subunits of thin
dendrites [11] indicate the possible important role of spatial compartmentalisation. Ad-
ditionally, experimental results, obtained by looking at learning by geometrical shape
changes of dendritic spikes, have shown that a single spike event is capable of modula-
tion of the signal transmission [4]. The MCU paradigm may provide a computational
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(a) Evolution of x variables of HR4-ANDNOT,
solid line synchronised, dotted line unsynchro-
nised.

(b) Synchronisation pulses of the synchro-
nisation function S when synchronising unit
HR4R3-2.

Fig. 25.7. SyncMCU model with synchronisation.

framework from which the computational abilities of dendritic structures can be stud- AUCan you provide
slightly different titles
for Figs. 6 and 7?
They are exactly the
same.

ied.
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