
Datamorphic Testing: A Method for Testing
Intelligent Applications

Hong Zhu∗, Dongmei Liu†, Ian Bayley∗, Rachel Harrison∗, Fabio Cuzzolin∗
∗School of Engineering, Computing and Mathematics, Oxford Brookes University, Oxford OX33 1HX, UK

Email: (hzhu, ibayley, rachel.harrison, fabio.cuzzolin)@brookes.ac.uk
†School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Email: dmliukz@njust.edu.cn

Abstract—Adequate testing of AI applications is essential to
ensure their quality. However, it is often prohibitively difficult
to generate realistic test cases or to check software correctness.
This paper proposes a new method called datamorphic testing,
which consists of three components: a set of seed test cases,
a set of datamorphisms for transforming test cases, and a set
of metamorphisms for checking test results. With an example
of face recognition application, the paper demonstrates how to
develop datamorphic test frameworks, and illustrates how to
perform testing in various strategies, and validates the approach
using an experiment with four real industrial applications of face
recognition.

Index Terms—software testing, intelligent applications, ma-
chine learning, test case generation, test oracle, datamorphism,
metamorphism.

I. MOTIVATION

We have seen a rapid growth in the application of machine
learning (ML), data mining and other artificial intelligence
(AI) techniques in recent years. Typical examples of such
applications include driverless vehicles, face recognition and
finger print recognition in security control, workload pattern
learning in computer cluster operation, personalisation of
social media networking for business intelligence, situation
recognition and action rule learning in healthcare, smart homes
and smart cities, etc. Many such applications are also closely
integrated with robotics, the Internet-of-Things, Big Data, and
Edge, Fog and Cloud computing. These all require automated
and optimised data collection and processing. AI techniques,
especially ML, have been widely regarded as a promising
solution to the underlying hard computational problems. All
such applications must be thoroughly tested to ensure their
quality [1].

However, the current practice of testing AI applications
lags far behind the maturity of testing traditional software.
Testers have been confronted with grave challenges because
the distinctive features of ML applications disqualify existing
software testing methods, techniques and tools. As a result,
generating realistic test cases and checking the results are
prohibitively difficult and expensive [2].

To address these difficulties, we propose a novel approach
called datamorphic testing for AI applications based on our
previous work [3] on integration of data mutation testing [4]
and metamorphic testing [5], [6].

The paper is organized as follows. Section II introduces
the basic concepts of datamorphic testing method. Section III
discusses the process and various strategies of datamorphic
testing. Section IV reports an experiment with four real indus-
trial ML applications of face recognition. Section V discusses
related work and future work.

II. BASIC CONCEPTS OF DATAMORPHIC TESTING

We first define the key concepts underlying the proposed
testing method and illustrate them using face recognition as
an example. Here, facial recognition is the problem of de-
termining whether an image portrays somebody whose facial
image is stored in a database of known persons.

A. Datamorphism

A datamorphism is a transformation that derives new test
data, called mutants, from existing test data. Let D and C
be the input and output domains of a program P under test,
respectively, V (x1, x2, · · · , xk, l) be a predicate on the set
Dk × L, where L is a given set of parameters, and k ≥ 0
is a given natural number.

Definition 1: (Datamorphism)
A k-ary datamorphism φ is a mapping from Dk × L to

D such that for all −→x = (x1, x2, · · · , xk) ∈ Dk, l ∈ L, if
V (−→x , l) = true, we have that φ(−→x , l) ∈ D. The elements l
in set L are called the parameters of the datamorphism. V is
called applicability condition of the datamorphism. ⊓⊔

For example, for the face recognition application, the input
domain of the application contains images of human faces.
The following examples of datamorphisms are applicable to
human facial images:

1) Add a pair of glasses;
2) Add makeup;
3) Change hair style;
4) Change hair colour.
Fig. 1 shows the results of applying these datamorphisms

to photos; (a) is the original photo1, (b) adds a pair of glasses
to (a), (c) adds a pair of sunglasses, (e) to (g) add makeup,
(h) changes the hairstyle and colour. Images (i) and (j) are
obtained by transforming (a) into black-and-white and into
watercolours, respectively.

1From the public dataset at URL http://vis-www.cs.umass.edu/lfw/



Note that, first, some transformations are not meaningful
in certain contexts. For example, automated passport control
requires people to remove items that obscure the face so adding
glasses is inapplicable there.

Second, most datamorphisms could be implemented as
program components. For example, images (b) to (h) in Fig. 1
were obtained by using a mobile phone app called YouCam2

and images (i) and (j) were obtained using another mobile
phone app called Prisma3. In the experiment reported in
Section IV, we also use the facial attribute inverting operators
provided by the AttGAN system [7].

B. Metamorphism

Not only do datamorphisms provide a means of test case
generation, they are also a powerful means to specify the
required functions of the application in terms of relationships
between test cases and the expected outputs. Such a rela-
tionship is called a metamorphic relation in the literature of
software testing [5], [6].

Definition 2: (Metamorphic Relation)
Let k ≥ 1 be a natural number. A k-ary metamorphic

relation M for program P is a relation on Dk × Ck such
that program P is correct on input −→x = (x1, · · · , xK) ∈ Dk

implies that the relation M(−→x , P (x1), · · · , P (xk)) holds,
where P (x) is program P ’s output on input x. ⊓⊔

The following is a typical example of metamorphic relation
for the Sin(x) function, where x and y can be any real number.

(x+ y = π) ⇒ Sin(x) = Sin(y)

The above equation defines a binary metamorphic relation (i.e.
k = 2) for the Sin function.

A typical form of metamorphic relations is

V (x1, · · · , xn) ⇒ R(x1, · · · , xn, y1, · · · , yn),

where V (x1, · · · , xn) is a relation on the input data
x1, · · · , xn, y1, · · · , yn are the corresponding outputs, and
R(x1, · · · , xn, y1, · · · , yn) is a relation on them. It asserts
that for all input data x1, · · · , xn satisfying condition V ,
the corresponding outputs y1, · · · , yn from program P must
satisfy condition R. The condition V is called the applicability
condition. In practice, an applicability condition may well
be constructed and defined in terms of the output, even the
immediate results, of the program P on the inputs x1, · · · , xn.
Condition R is called the correctness condition. It is an
assertion about software correctness in terms of an expected
relationship between inputs and outputs.

A metamorphic relation is a very flexible and ex-
pressive means of specifying software functions. In fact,
formal specifications in the form of pre/post-conditions
pre(x){P}post(x, y) is a special case of metamorphic relation
pre(x) ⇒ post(x, P (x)), where the arity of the relation k = 1.

To apply a metamorphic relation in the form of V (−→x ) ⇒
R(−→x ,−→y ) in software testing, one must generate test cases

2URL: https://www.perfectcorp.com/app/ycp
3URL: https://prisma-ai.com

a1, · · · , an that satisfy condition V (a1, · · · , an), for example,
by searching on the input space or by solving constraints.
Then, the program P under test is executed on test cases
a1, · · · , an to obtain outputs b1 = P (a1), · · · , bn = P (an).
Finally, the condition R is checked on the input and outputs
a1, · · · , an, b1, · · · , bn to determine whether the program is
correct on these test cases.

The two main difficulties of using metamorphic relations
in software testing are finding a suitable set of metamorphic
relations that are effective for detecting faults in the software
under test and finding test cases that satisfy the applicability
conditions of the metamorphic relations. These difficulties
can be eased if metamorphic relations are combined with
datamorphisms as shown in [3].

Definition 3: (Metamorphism)
Let Ψ ̸= ∅ be a given set of datamorphisms on the input

domain of program P . A metamorphic relation M is called a
metamorphism, if it can be presented in the following form.

R(x1, · · · , xk, P (x1), · · · , P (xk), P (x′
1), · · · , P (x′

m))

where x′
i = φi(

−→zi , li), −→zi is a subset of {x1, · · · , xk}, φi ∈ Ψ
for all i = 1, · · · ,m. We say that the metamorphism is defined
on φ1, φ2, · · · , φm. ⊓⊔

A metamorphism asserts that for all input data
x1, · · · , xk, the correctness condition R holds on
P (x1), · · · , P (xk), P (x′

1), · · · , P (x′
m). For the Sin

function example the following is a metamorphism for
the datamorphism ϕ(x) = π − x.

Sin(x) = Sin(π − x)

With metamorphisms, testing can be performed automati-
cally by, first, applying the datamorphism on existing test cases
to obtain mutant test cases. Then, the program is executed
on the seed and mutant test cases. Finally, the results of the
test executions are checked against the correctness condition
to determine the correctness of the program. This avoids
searching for test cases or constraint solving.

In many cases, a metamorphism can be easily derived
from the meaning of the datamorphism. For example, let
AddGlasses(x) denote the datamorphism of adding a pair
of glasses on a facial image. A metamorphism for the face
recognition application FaceOf(x) can be formally defined
on AddGlasses(x) as follows.

FaceOf(x) = FaceOf(AddGlasses(x)).

This metamorphism states that if the face recognition appli-
cation recognises a person in an image, then, after adding a
pair of glasses by editing the image, the software should still
recognise the person. Therefore, applying this metamorphism
to image (a) and (b) in Fig. 1, we expect a face recognition
application will identify that the images are of the same
person.

Metamorphisms like the above are actually formal spec-
ifications. Testing an AI application can be automated if
datamorphisms and metamorphisms can be implemented in



Fig. 1. Examples of datamorphisms on images.

software. For example, as stated earlier, it is possible to edit
an image and generate a mutant of an image as shown in
Fig. 1. Then, by feeding both the original and the mutant
images to a facial recognition application, the correctness of
the application can be checked by comparing the outputs of
these two test cases. If the outputs are identical, the application
passes the test; otherwise, an error is detected.

C. Seed Test Cases

For a datamorphism to be useful, we must have a set of
known test cases, called the seed test cases, or simply seeds.

In the face recognition example, a seed could be an image
of a person’s face. Such a set of seeds is normally available
for testers of many AI applications, for example, as training
data for an ML application. The seeds could be a subset of
such training data selected at random or according to certain
criteria. However, seeds alone are inadequate. Our method uses
the seeds to generate more test cases to make an adequate test
of the application. Seeds are not necessarily labeled with the
expected outputs unless the datamorphisms require such labels.

A datamorphism may well be applicable to mutants, espe-
cially when the mutants are generated by a different datamor-
phism. For example, in Fig. 1, (h) is obtained by applying a
datamorphism on mutant (e).

In summary, our testing framework consists of three ele-
ments: a set of seed test cases, a set of datamorphisms and a
set of metamorphisms.

Definition 4: (Datamorphic Test Framework)
Let D be the input domain of a program P under test. A

datamorphic test framework F is an ordered triple ⟨S, Ψ,M⟩,
where S ⊆ D is a finite subset of D. The elements of S are

Fig. 2. Datamorphic testing process.

called the seed test cases, or simply seeds. Ψ is a finite set of
datamorphisms, and M is a finite set of metamorphisms. ⊓⊔

The next section discusses how to construct a datamorphic
test framework and how such a test framework can be used
with different strategies.

III. TESTING PROCESS AND STRATEGIES

A. Process of Datamorphic Testing

As illustrated in Fig. 2, the datamorphic testing process
consists of three stages.

1) Stage 1: Analysis: The first stage is analysis of the test-
ing problem in order to design a datamorphic test framework.
In this stage, seed test cases, datamorphisms and metamor-
phisms are identified. These three elements are closely related
to each other, thus should be engineered systematically.

Analysis starts by identifying the operating conditions of
the application. For a face recognition application at an inter-
national airport’s border control, for example, the input to the
software is a photo from a camera fitted on an automatic pass-
port checking machine and the photo of the passport holder



retrieved from the information contained in a smart passport.
The person may be of any ethnic background, age or gender.
Normally, the person should be facing the camera directly
without glasses and without heavy makeup, etc. However, in
reality, people may wear glasses (even sunglasses), and have
makeup. The photo could be many years old and taken from
an unusual angle and the camera may have dust on its lens, etc.
These form a variety of operating conditions of the application.
Real world use of the software could be a combination of
these aspects. Adequate testing of the application must cover
all such combinations. Directly collecting test data to achieve
adequate testing could be a challenge.

Our approach to solve this problem is to take a subset of the
operating conditions as the normal conditions, and the others
as abnormal conditions. The seed test cases are constructed
from various combinations of the normal operating conditions.
For example, we consider the person in front of the automatic
passport checking machine is in normal operating condition if
he/she does not wear glasses, has no makeup and the passport
photo is taken recently. He/she could be of different ethnic
background, in a different age group, and of different gender.
Photos with combinations of these factors are sought as the
seed tests.

The other operating conditions are regarded as “abnormal”.
For example, for the face recognition application to passport
control, abnormal operating conditions include the situations
that the passenger wears glasses or makeup, changes hair
colour, the passport photo is out of date, the camera lens is
dusty, or the camera points to the person at a different angle,
etc. Test cases representing abnormal operation conditions are
obtained by transforming seed test cases into mutant test cases.
Each of these abnormal conditions in the operation of the
software is therefore a candidate for datamorphism.

For an abnormal operating condition to be a datamorphism,
it must also be feasible to implement a transformation on
the input data. Otherwise, the operating condition must be
added to the set of “normal” operating condition and the
corresponding test cases must be obtained directly as seeds.

Once the normal and abnormal operating conditions are
identified, the corresponding changes of a datamorphism on
the output should be identified, thus metamorphisms can be
derived. For example, adding a pair of glasses should make
the person still recognizable.

The first stage should finish with a set of specifications
of the seed test cases, the datamorphisms and the metamor-
phisms. These specifications can be in natural language, but
should be detailed enough for performing the next steps of the
process.

2) Stage 2: Realisation: The second stage of datamorphic
testing is realisation. In this stage, the actual test data of the
seeds are constructed, and datamorphisms and metamorphisms
are realised.

A datamorphism can be realised by developing software
that takes test data as input and generates new test data.
Sometimes, applications already available can be used as
datamorphisms as shown by the face recognition example.

A datamorphism can also be realised by manually editing
test cases. If datamorphisms cannot be realised, seed test
cases must be obtained directly to represent the corresponding
operating conditions.

A metamorphism can typically be implemented as code
that invokes the application with seed and mutant test cases,
and then stores and/or compares the result according to the
metamorphism.

3) Stage 3: Execution: The final stage of datamorphic
testing is execution, in which the test is executed according to a
test strategy, which is discussed in detail in the next subsection.

B. Datamorphic Testing Strategies

There are many strategies of generating test cases using
datamorphisms.

• Exhaustive
An exhaustive strategy is to generate all possible mutant

test cases by repeatedly applying the datamorphisms on the
seeds until no more new mutants can be generated. Formally,
let T be the set of test cases. T is initialised to the set of seed
test cases. Each datamorphism is applied to every seed with
all possible parameters to generate a set of mutants. These
mutants are added to the set T of test cases and duplicates are
removed. This mutant generation process is repeated until no
new test cases can be added.

Exhaustive testing may generate a huge number of test cases
from a small set of seeds. In some cases, there may be an
infinite number of test cases that can be generated from a
finite number of seeds. Therefore, it is desirable to select a
subset of such exhaustive test set. The following are some
examples.

• Combinatorial
For the sake of simplicity, we use unary datamorphisms to

explain the notion of combinatorial strategy. This can easily
be extended to binary and n-ary datamorphisms for n > 1.

Assume that there is a set Ψ of n > 0 unary datamorphisms.
A mutant test case m obtained by a sequence of applications of
datamorphisms φ1, φ2, · · · , φl ∈ Ψ on a seed test case s ∈ S
is represented as

m = φ1 ◦ φ2 ◦ · · · ◦ φl(s).

A set T of test cases is said to be 1-way combinatorial
complete, if for every seed test case s and every datamorphism
φ, there is a test case t ∈ T such that t = · · ·◦φ◦· · · (s). A set
T of test cases is said to be 2-way combinatorial complete,
if for any ordered pair of datamorphisms φ1, φ2 ∈ Ψ, for
every seed test case s, there is a test case t ∈ T such that
t = · · · ◦ φ1 ◦ · · · ◦ φ2 ◦ · · · (s).

Similarly, we can define k-way combinatorial completeness
for every k > 2. Moreover, we say a set of test cases is 0-way
combinatorial complete, if it contains all seed test cases.

A set of test cases satisfies the k-way combinatorial cov-
erage criterion, if it is n-way combinatorial complete for all
n = 0, · · · , k. Similarly, we can define k-way combinatorial
completeness and k-way combinatorial coverage criteria for a
set of non-unary datamorphisms.



As in traditional combinatorial testing, the number of test
cases that satisfies the k-way combinatorial coverage cri-
terion can be significantly smaller than the number of all
combinations of k datamorphisms on all seed test cases.
For many ML applications, the datamorphisms, like those
for transformation of facial images, are often commutative,
associative, and idempotent. Thus, the number of test cases to
satisfy a combinatorial coverage criterion can be much smaller.

• Optimal
This strategy is inspired by genetic algorithms. Consider

the set of seed test cases as the initial population and the
datamorphisms as mutation operators. At each step in the
test case generation process, select a subset of the current
population and a subset of datamorphisms to generate new
mutants and add them into the population. The selection can be
guided by a fitness function to either achieve maximal fitness
in a fixed number of cycles, or until the fitness level peaks,
or until the population reaches a certain number. Depending
on the definition of the fitness function and the choice of
termination condition, various kinds of optimisation of the test
set can be obtained.

• Random
A basic strategy is to select a seed test case and a datamor-

phism at random to generate one mutant a time until a total
number of test cases is generated or the testing is adequate
according to some adequacy criterion.

• Exploratory
For classification and clustering problems, a practical goal

of testing is often to find out the boundary between two
classes. This can be done by defining binary datamorphisms
to seek the boundary points and thereby find the Pareto front.
For example, assume that P (x) is a program that classifies an
input real number x into two classes A and B. If there are two
test cases a and b such that P (a) ̸= P (b), a datamorphism
Mid(x, y) = (x + y)/2 can be applied to generate a test
case c = Mid(a, b). If P (a) ̸= P (c), then another test case
d = Mid(a, c) will be generated and the program tested
on that; otherwise, test case d = Mid(b, c) is generated
and tested. This process repeats iteratively until the distance
between two test cases is small enough. In general, a test
strategy may use the program output on test cases to determine
which datamorphism to apply and on which test case. The
principles of search-based testing apply [10].

IV. EXPERIMENT

In this section, we report an experiment to demonstrate the
validity of datamorphic testing method.

A. Goal of The Experiment
The goal of the experiment is to investigate the validity of

test case generation by applying datamorphisms on images for
testing face recognition. The research questions to be answered
are:

• RQ1: Is an image generated by applying datamorphisms
on an existing image a valid test case for face recognition
applications?

• RQ2: Are the test results on a ML application valid when
using mutant test data obtained by applying datamor-
phisms in seed test cases?

B. Design of The Experiment

The experiment consists of three key elements: (a) the AI
application to be tested; (b) the dataset used to select both the
seed test cases and also the real test data used in comparison
with mutant test cases; (c) the transformations on test cases to
be used as the datamorphisms.

1) Applications under test: We have selected four real ML
applications of the same kind from industry, i.e. four face
recognition applications. They are:

1) Tencent Face Recognition4

2) Baidu Face Recognition5

3) Face++ online face recognition6

4) SeetaFace face recognition.
The first three are online services invoked through APIs

written in Java. SeetaFace is an open source project based
on openCV. The project is cloned from GitHub7 and installed
on our local computer system. It is written in C++ and our
invocation code is also in C++.

These applications are used to evaluate the validity of test
cases generated by datamorphisms on facial images as well as
to demonstrate the applicability and cost effectiveness of the
testing method. The employment of multiple ML applications
of the same kind but developed by independent vendors
enables us to demonstrate the reusability and generalisability
of the datamorphisms and test strategies.

2) Datasets: Two public datasets are used in our experi-
ment.

• CelebA8, which contains ten thousand identities, each
of which has twenty images. There are two hundred
thousand images in total. We selected randomly 200 (i.e.
1%) images of different identities from the dataset as the
seed test cases to generate mutant test cases.

• PubFig9, which contains 58,797 images of about 200
people also collected from the internet. For each indi-
vidual, the dataset contains multiple images (about 300
on average) taken in completely uncontrolled situations
as non-cooperative subjects with large variation in pose,
lighting, expression, scene, camera, imaging conditions
and parameters, etc. This unique feature of the dataset
makes it ideal to compare the images generated by
applying datamorphisms.

3) Datamorphisms and Metamorphisms: Instead of manu-
ally operating the YouCam APP as in Section II, we used the
open source GitHub project AttGAN10, which implements a set
of 13 facial attribute editing operators [7]. Each operator takes

4URL: https://ai.qq.com/product/face.shtml#detect
5URL: https://aip.baidubce.com/rest/2.0/face/v3/match
6URL: https://api-cn.faceplusplus.com/facepp/v3/compare
7URL: https://github.com/seetaface/SeetaFaceEngine
8URL: https://github.com/LynnHo/AttGAN-Tensorflow
9URL: http://www.cs.columbia.edu/CAVE/databases/pubfig/
10URL: https://github.com/LynnHo/AttGAN-Tensorflow



Fig. 3. Illustration of the image transformations.

a facial image as input and generates a new image that changes
a facial attribute. They are listed in Table I and illustrated in
Fig. 3.

TABLE I
ATTGAN’S FACE ATTRIBUTE EDITING OPERATORS

Operation Meaning
Bald Change the facial image into bald
Bangs Add bangs to the facial image
Black Hair Change the hair colour into black
Blond Hair Change the hair colour into blond
Brown Hair Change the hair colour into brown
Bushy Eyebrows Change the eyebrows to be bushy
Eyeglasses Add eyeglasses to the image
Male Change the image from female to male
Mouth Open Change the mouth to be slightly open
Mustache Add or remove mustache to the facial image
Beard Add or remove beard
Pale Skin Make the skin tone to be pale
Young Change the image to look younger

The metamorphisms used in the experiments are

FaceSimile(x, φ(x)) ≥ 80%

where φ(x) is any of the datamorphisms given in Table I,
FaceSimile is any of the four face recognition applications.
For each of them, FaceSimile(x, y) returns a number in the
interval [0,100] as the similarity score between two facial
images x and y.

C. Execution of The Experiment

The experiment consists of the following 3 steps.

1) Generation of mutant test cases: The mutant test cases
are generated by using the AttGAN software on 200 images
selected at random from the CelebA dataset.

The validity of the AttGAN algorithm for inverting facial
images on various attributes has been intensively studied
via cross-validation [7] on two large-scale labeled datasets,
which clearly demonstrated that the resulting facial images
achieved their purposes from the machine learning and image
processing points of view. Our purpose differs from their
experimental study. It is to validate the use of modified images
as test cases for face recognition applications. Therefore, each
facial image in the selection from the CelebA dataset is
used as the seed, and 13 mutants generated by applying the
transformations listed in Table I are used as mutant test cases.
A total of 2,600 mutant test cases were generated.

2) Testing on generated test cases: The face recognition
applications are tested on the mutant test cases against the
seed test cases.

These mutants were input to four face recognition ML
applications to obtain a measure of the similarity between the
seed and the mutant, which is a numerical score in the range
between 0 to 100. The raw data can be found in [8].

3) Testing on real images: To validate the result of the
testing on these mutant test cases, we selected at random
13 images for each individual from the PubFig dataset. We
use these real images to test the face recognition applications
and obtained their recognition accuracies. A total of 2600 real
images were used as the real test cases. See [8] for the test
result data.

D. Analysis of The Results

The data collected from the experiments are analysed to
answer the research questions RQ1 and RQ2.

1) Validity of Using Generated Images as Test Data: To
answer research question RQ1, we analyse how close the
generated test cases are with respect to the original image. For
each type of mutant, the average of similarity scores indicates
how well the generated test case is close to the original image
in the eyes of the ML application. The distribution of average
similarity scores and their standard deviations over different
image operators are shown in Fig. 4(a) and (b). Details of the
data can be found in [8].

The results show that the overall average similarity scores
are between 80.32 and 99.70 for different face recognition
applications. The smallest standard deviation is 1.51 while
the largest standard deviation is 7.07. Therefore, we can
conclude that facial images generated by applying such image
processing algorithms to change various attributes of the image
are very close to the real images, thus valid as test cases.

There are a small number of cases where recognition fails,
as shown in Fig. 4(c). This is either because the application
does not recognize any face in the image or because there is
a timeout in the transmission of image data to the servers on
the Cloud. Both of these cases are ignored when calculating
recognition accuracy.



Fig. 4. Similarity between seeds and the mutants.

Fig. 5. Testing on mutants vs on real test cases.

2) Test Effectiveness: To answer research question RQ2, we
compare the test results obtained by using generated mutant
test cases and the results obtained by using real images.

Our experiments demonstrated that using mutant test cases
to test facial recognition applications can differentiate their
recognition capability; see Fig. 5.

The results show that the Tencent Face Recognition gives
the highest overall average (99.70) of similarity scores between
the seeds and mutants, while SeetaFace has the lowest overall
average (80.29) of similarity scores. Face++ and Baidu Face
Recognition are very close on overall average scores, 93.09
and 94.75, respectively. These results are highly correlated to
the overall average scores of the testing with real images. The
Pearson’s correlation coefficient between them is 0.99. The
standard deviations are also highly correlated with a Pearson’s
correlation coefficient of 0.82. Therefore, we can conclude that
the test results obtained by using mutant test cases is valid.

V. CONCLUSION

In this paper, we proposed a new software testing method
called datamorphic testing and explored its applicability to
testing ML applications. An experiment has shown it is a valid
approach.

A. Related Work

The proposed approach is an improvement, generalisation
and integration of many data centric testing methods.

Data mutation testing was proposed by Shan and Zhu to
test software whose input is structurally complex [4]. A test
framework in data mutation testing consists of a set of known
test cases called seeds and a set of data mutation operators
applicable on the seed test cases. This inspired the seed test
cases and datamorphisms of our approach. An empirical study
of data mutation testing method was conducted by testing a
modelling tool. It demonstrated high fault detection ability.
Datamorphic testing improves upon data mutation testing by
integrating it with metamorphic testing. It advocates that
data mutation operators should be engineered together with
metamorphic relations, so that the correctness of the software
on test cases can be automatically checked.

Metamorphic testing was proposed by Chen, et al. [5], who
introduced the notion of metamorphic relations and explored
its use in software testing. It has been an active research
topic since then, with researchers empirically studying the
effectiveness of the testing method. Recent surveys of the work
on this topic can also be found [6].

Zhu has integrated data mutation testing and metamorphic
test methods and showed that using data mutation operators,
metamorphic relations can be easily derived [3], overcoming
a long-standing barrier to practical use. Zhu also reported on
an automated testing tool called JFuzz to support the use of
integrated data mutation and metamorphic testing methods for
Java unit testing. Datamorphic testing improves the applicabil-
ity of metamorphic testing by allowing systematic derivation
of datamorphisms and metamorphisms, as illustrated by the ex-
ample above and the experiment. Moreover, JFuzz implements
a simple fixed strategy of using data mutation operators and
metamorphisms in testing. In contrast, the datamorphic testing
method proposed in this paper regards the testing strategy as
a variable element.

Fuzz testing is a type of random testing [9], in which a
test case is randomly modified and the correctness criterion
is that the software does not crash. It is a special trivial
case of datamorphic testing. Thus, datamorphic testing can
significantly increase testing effectiveness by specifying more
meaningful modifications of the test cases with datamorphisms
and more accurate correctness conditions in metamorphisms.

Search-based testing regards testing as an optimisation
problem, to maximise the test effectiveness or test coverage by
searching on the space of test cases [10]. Genetic algorithms
are often employed to realise such optimisation. Datamorphic
testing can be combined with search-based software testing
to search for optimised test sets, for example, by using
datamorphisms as means of generating a population of test



cases, and coverage of metamorphisms as the optimisation
target. As discussed in Section III, the principle of search-
based testing can be applied to form specific testing strategies
of datamorphism testing.

Testing ML applications is rarely reported in the research
literature. An exception is DeepTest [2], which is a software
tool for testing deep neural network (DNN) driven autonomous
cars. It automatically generates test cases leveraging real world
changes in driving conditions like rain, fog, lighting condi-
tions, etc. via image transformations. Metamorphic relations
are defined based on such image transformations and used to
detect erroneous behaviours. DeepTest can be understood as a
datamorphic testing tool for a special type of ML applications.
It demonstrates that such synthetic test cases can be realistic
and capable of finding a large number of erroneous behaviours
under different realistic driving conditions, many of which led
to potentially fatal crashes in three top performing DNNs in
the Udacity self-driving car challenge. Most existing testing
techniques for DNN-driven vehicles are heavily dependent
on the manual collection of test data under different driving
conditions. This is prohibitively expensive as the number of
test conditions increases. DeepTest shows that the approach
to generate a large number of realistic test cases can be
cost efficient. However, it is unclear how the seed test cases
reported in [2] are selected, how transformations on test cases
are identified, and what test strategy were implemented in
DeepTest to generate mutant test cases. These are some of
the issues that this paper attempts to address.

The main contribution of this paper is a theoretical frame-
work of a testing method for AI applications, which unifies
the existing data centric testing methods and techniques. It lays
a foundation for an engineering methodology and automated
testing tool for AI applications.

B. Further Work

We are developing an automated testing tool to support
datamorphic testing method for AI applications. It aims to
show the feasibility of datamorphic testing with significant
improvement in test effectiveness and efficiency. We are fur-
ther investigating practical techniques in the framework of
datamorphic testing. These techniques include (a) adequacy
criteria for testing AI applications, (b) various test strategies
and heuristics rules for controlling the testing activities, and (c)
test process models that integrate testing with the development
process of AI applications.

We are conducting further experiments with different testing
strategies and empirical studies with different real AI applica-
tions in order to develop practical guidelines on the uses of
the testing techniques and automated tools based on empirical
evidence.

ACKNOWLEDGMENT

The work reported in this paper is partially supported by the
National Science Foundation of China (Grant No. 61502233).

REFERENCES

[1] X. Bai, J. Li, and A. Ulrich, (eds.), Proceedings of The 2018 IEEE/ACM
13th International Workshop on Automation of Software Test (AST
2018), Gothenburg, Sweden, May 28, 2018.

[2] Y. Tian, K. Pei, S. Jana, and B. Ray, “DeepTest: Automated Testing
of Deep-Neural-Network-Driven Autonomous Cars”, in Proc. of the
40th IEEE/ACM Int’l Conf. on Software Engineering (ICSE 2018),
Gothenburg, Sweden, 2018, pp. 303-314.

[3] H. Zhu, “JFuzz: A Tool for Automated Java Unit Testing based on Data
Mutation and Metamorphic Testing Methods”, in Proc. of the 2nd Int’l
Conf. on Trustworthy Systems and Their Applications (TSA 2015), 8-9
July 2015, pp8-15.

[4] L. Shan, and H. Zhu, “Generating Structurally Complex Test Cases by
Data Mutation: A Case Study of Testing an Automated Modelling Tool”,
The Computer Journal, vol. 52, no.5, pp571-588, Aug. 2009.

[5] T. Y. Chen, et al., “Metamorphic Testing: A New Approach for Gener-
ating Next Test Cases”, Technical Report HKsUST-CS98-01, Dept. of
Computer Science, Hong Kong Univ. of Science and Technology, 1998.

[6] T. Y. Chen, et al., “Metamorphic Testing: A Review of Challenges and
Opportunities”, ACM Computing Surveys, vol. 51, no. 1, Article 4, 27
pages, January 2018.

[7] Z. He, W. Zuo, M. Kan, S. Shan, and X. Chen, “Arbitrary Facial
Attribute Editing: Only Change What You Want”, arXiv preprint
arXiv:1711.10678, 2017.

[8] H. Zhu, D. Liu, I. Bayley, R. Harrison, and F. Cuzzolin, “Datamorphic
Testing: A Methodology for Testing AI Applications”, Technical Re-
port OBU-ECM-AFM-2018-02, School of Engineering, Computing and
Mathematics, Oxford Brookes University, Oxford OX33 1HX, UK, Dec,
21, 2018. Available online at http://cms.brookes.ac.uk/staff/HongZhu/
Publications/TR201802.pdf)

[9] M. Sutton, A. Greene, and P. Amini, Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley, 2007.

[10] M. Harman, A. Mansouri, and Y. Zhang, “Search based software
engineering: Trends, techniques and applications”, ACM Computing
Surveys, vol. 45. no.1, Article 11, 61 pages, November 2012.


