
Exploratory Datamorphic Testing of Classification Applications
Hong Zhu and Ian Bayley

Oxford Brookes University

Oxford OX33 1HX, UK

(hzhu|ibayley)@brookes.ac.uk

ABSTRACT
Testing has been widely recognised as difficult for AI applications.

This paper proposes a set of testing strategies for testing machine

learning applications in the framework of the datamorphism test-

ing methodology. In these strategies, testing aims at exploring the

data space of a classification or clustering application to discover

the boundaries between classes that the machine learning appli-

cation defines. This enables the tester to understand precisely the

behaviour and function of the software under test. In the paper,

three variants of exploratory strategies are presented with the algo-

rithms as implemented in the automated datamorphic testing tool

Morphy. The correctness of these algorithms are formally proved.

The paper also reports the results of some controlled experiments

with Morphy that study the factors that affect the test effectiveness

of the strategies.

CCS CONCEPTS
• Software and its engineering→ Software notations and tools;
• Computing methodologies → Artificial intelligence; Ma-
chine learning.

KEYWORDS
Artificial intelligence, Software testing, Automated software test-

ing, Test method, Testing tools, Datamorphic testing, Exploratory

testing, Test strategies

ACM Reference Format:
Hong Zhu and Ian Bayley. 2020. Exploratory Datamorphic Testing of Clas-

sification Applications. In AST ’20: International Workshop on Automation
of Software Test (AST ’20), October 7–8, 2020, Seoul, Republic of Korea. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3387903.3389312

1 INTRODUCTION
It is widely recognised that the generation of test data for AI appli-

cations is prohibitively expensive [11]. Checking the correctness of

a test result is also notoriously difficult, if not completely impossible

[7, 15]. Moreover, existing testing techniques for measuring test

coverage and the automation of testing activities and processes

are not directly applicable [20]. Testing AI applications is therefore

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

AST ’20, October 7–8, 2020, Seoul, Republic of Korea
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7957-1/20/05. . . $15.00

https://doi.org/10.1145/3387903.3389312

a grave challenge for software engineering [2]. Developing novel

approaches to test AI applications is highly desirable [4].

In [20, 21], we proposed a method called datamorphic testing for

testing AI applications and reported a case study with face recogni-

tion applications. The method is further developed in [17, 18], in

which the notion of test morphisms is introduced, an automated

testing tool called Morphy is reported and a set of test strategies

are formally defined and implemented. The case studies reported

in [17] shows that test strategies can significantly improve automa-

tion for testing AI applications. This paper presents another set

of datamorphic test strategies specifically designed for testing the

classification and clustering type of AI applications, which clas-

sify objects and entities according to their features and attributes.

Classification and clustering are one of the largest categories of AI

applications, and many AI techniques such as machine learning

and data analytics generate applications of this category [1, 5, 8].

The proposed test strategies are based on the idea of exploratory

testing in which testers interact with the application and use the

information the application provides to change the course of testing

in order to explore the application’s functionality [12]. It is different

from testing for verification and validation, which aims to confirm

the correctness of the software under test with respect to a given

specification. In contrast, exploratory testing treats the software

under test as an object unknown and regards software testing as

a series of experiments with the software aimed at discovering its

functions and features. Moreover, the traditional verification and

validation testing methods regard test cases as independent from

each other. In contrast, exploratory testing uses the result of the

previous test cases to guide its choice of the next test case in order

to maximise its effectiveness in the process of searching for useful

information.

The paper is organised as follows. Section 2 briefly reviews the

datamorphic testing method, the automated testing tool Morphy,

and the basic concepts of classification applications. Section 3 de-

fines a set of three exploration strategies and illustrate their use

with an example. Section 4 reports the experiments with these

strategies on their performances. Section 5 concludes the paper

with a discussion of related work and future work.

2 PRELIMINARIES
In this section, we briefly review the datamorphic testing method

and the testing tool Morphy, and clustering and classification tech-

niques to set the context of the paper.

2.1 Overview of Datamorphic Testing Method
In the datamorphic software testing method [17], software arte-

facts involved in testing are classified into two types: entities and
morphisms.

https://doi.org/10.1145/3387903.3389312
https://doi.org/10.1145/3387903.3389312

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

Test entities are objects and data that are used and/or generated

in testing. These include test cases, test suites/sets, the programs

under test, and test reports, etc.

Test morphisms are mappings between entities. They generate

and transform test entities to achieve testing objectives. They can

be implemented as test code and invoked to perform test activities

and composed to form test processes. The following are the test

morphisms recognised by the datamorphic test tool Morphy.

• Test set creators create sets of test cases. They are called seed
test case makers in [16, 21]. A typical example is random test

case generators like fuzzers [10].

• Datamorphisms are mappings from existing test cases to new

test cases. They are called data mutation operators in [9].

• Metamorphisms are mappings from test cases to Boolean val-

ues that assert their correctness. They are test oracles. Formal

specifications and metamorphic relations in metamorphic

testing [3, 7] can also be used as metamorphisms.

• Test casemetrics aremappings from test cases to real numbers.

They measure test cases giving, for example, the similarity

of a test case to the others in the test set.

• Test case filters are mappings from test cases to truth values.

They can be used, for example, to decide whether a test case

should be included in a test set.

• Test set metrics are mappings from test sets to real numbers.

They measure the test set quality, such as its code coverage

[19].

• Test set filters are mappings from test sets to test sets. For

example, they may remove some test cases from a test set

for regression testing.

• Test executers execute the program under test on test cases

and receive the outputs from the program. They are map-

pings from a piece of program to a mapping from input data

to output. That is, they are functors in category theory.

• Test analysers analyse test sets and generate test reports.

Thus, they are mappings from test sets to test reports.

A test system T = ⟨E ,M ⟩ in datamorphic testing consists of a

set E of test entities and a set M of test morphisms. In Morphy

[17], a test system is specified as a Java class that declares a set of

attributes as test entities and a set of methods as test morphisms.

Given a test specification, Morphy provides testing facilities to

automate testing at three different levels. At the lowest level, vari-

ous test activities can be performed by invoking test morphisms via

a click of buttons on Morphy’s GUI. At the medium level, Morphy

implements various test strategies to perform complex testing activ-

ities through combinations and compositions of test morphisms. At

the highest level, test processes are automated by recording, editing

and replaying test scripts that consist of a sequence of invocations

of test morphisms and strategies.

Test strategies are complex combinations of test morphisms

designed to achieve test automation. Three sets of test strategies

have been implemented in Morphy:

• Mutant combination: combining datamorphisms to generate

mutant test cases; see [17].

• Domain exploration: searching for the borders between clus-

ters/subdomains of the input space;

• Test set optimisation: optimising test sets by employing ge-

netic algorithms.

This paper focuses on domain exploration strategies, which will

be defined in Section 3. Those strategies that employ genetic algo-

rithms to optimise test sets will be reported in another paper.

2.2 Classification Applications
Clustering as a data mining and machine learning problem is the

partitioning of a given set of data points into groups containing

similar data points. However, clustering does not only partition

the data in the given data set, but also makes it possible to put

new data into the right groups. The key concept of clustering is

similarity between data points, which is defined formally in the

form of a similarity or distance function on the data space. Two

pieces of data that are similar to each other should be put into the

same group, while the data that are dissimilar should be placed

in different groups. Whereas clustering is unsupervised learning,

classification is supervised learning. Given a number of examples

of data points and their classifications, it learns how to assign data

to groups [1, 5, 8].

In both clustering and classification, the result is a program P
that maps from the data space D into a number of groupsG . We say

that P is a classification application. We will write P (x) to denote

the output of P on an input x ∈ D, and call P (x) the classification of

x by P . We also assume that there is a function dist : D × D → R+

measuring the distances between any two points x and y in the

data space D such that:

• ∀x ∈ D (dist (x ,x) = 0);
• ∀x ,y ∈ D (dist (x ,y) ≥ 0);
• ∀x ,y ∈ D (dist (x ,y) = dist (y,x));
• ∀x ,y, z ∈ D (dist (x ,y) + dist (y, z) ≥ dist (x , z)).

The distance function measures the similarity between data

points in that the smaller the distance between two points the

more similar they are.

For a classification program, it is crucial to classify data into

correct classes. However, the borders between classes are often

unknown if the classification program is obtained through machine

learning and data mining. The goal of the exploration strategies

proposed in this paper is to find a set of data pairs that represents

the borders between classes. Thus, we introduce the notion of Pareto
front of the classification as defined by the program P under test.

Definition 1. (Pareto Front of Classification)
Let P : D → G be a classification program, dist : D × D → R be a

distance metric defined on the input space D, and δ > 0 be a given
real number. A set {< ai ,bi > |ai ,bi ∈ D, i = 1, · · · ,n} of data pairs
is a Pareto front of the classes of D according to P with respect to dist
and δ , if for all i = 1, · · · ,n, P (ai) , P (bi) and dist (ai ,bi) ≤ δ . □

A Pareto front can show accurately the borders between the

classes, thus help testers to determine whether the classification is

correct or not.

2.3 Exploratory Test Systems
To apply an exploratory test strategy to a classification program

P : D → G with a distance function dist , we assume that the test

system T = ⟨E ,M ⟩ has the following properties.

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

(1) The set M of morphisms contains a test executer ExeP (x)
that executes the program P under test on a test case x and

receives the output of P ; that is ExeP (x) = P (x). In the sequel,
we will write P (x) for ExeP (x) for the sake of simplicity.

(2) There is a setW ⊆ M of unary datamorphisms defined

on D. Informally, for each w ∈ W and x ∈ D, w (x),w2 (x),
· · · , wn (x) generates a sequence of different data points

in D, where w1 (x) = w (x), wn+1 (x) = w (wn (x)). These
datamorphisms are called traversal methods.

(3) There is also a binary datamorphismm ∈M such that for all

x ,y ∈ D, dist (x , z) < dist (x ,y) and dist (y, z) < dist (x ,y),
where z = m(x ,y) ∈ D. Informally, the datamorphism m
calculates a point between x and y. It is called the midpoint
method.

Note that, for all x ,y ∈ D and z =m(x ,y), we have:

(P (x) , P (y)) ⇒ (P (x) , P (z)) ∨ (P (y) , P (z)). (1)

Informally, if the program P under test classifies x and y into dif-

ferent classes, the midpoint between x and y must be either not in

the same class as x or not in the same class as y.

2.4 The Running Example
In Section 3, we will use the following simple classification program

as a running example to illustrate the exploration strategies. It

classifies the points in a two-dimensional continuous space [0, 2π]×
[−1, 1] into three classes: red, black and blue as illustrated in Figure

1. In this example, data points x andy is a Pareto Front pair between

black and red classes, if x is red and y is black and they are very

close to each other. Such pairs can show accurately the borders

between the classes, and thus help testers to determine whether

the classification is correct or not.

Figure 1: Data Space of the Running Example

Figure 2 gives the traversal and midpoint methods in the Morphy

test specification. The midpoint method mid (x ,y) calculates the
geometric midpoint between x and y.

It is easy to see that the running example forms an exploratory

test system with the following distance function.

Eucl (⟨x1,x2⟩ ,
〈
y1,y2

〉
) =

√
(x1 − y1)2 + (x2 − y2)2 (2)

3 EXPLORATION STRATEGIES
This section presents the algorithms for three different exploratory

strategies for testing clustering and classification applications. We

also prove their correctness and illustrate their behaviour by using

the running example given in the previous section.

Figure 2: Datamorphisms of the Running Example

3.1 Random Target Strategy
Let’s start with a simple exploration strategy based on random

selection of known test cases in order to find the Pareto front of

the classification groups between these two test cases. We call this

strategy random target strategy.
The strategy starts by selecting a pair of two test cases x and y

at random. If the outputs of the program P under test on these test

cases are different, i.e. P (x) , P (y), then a point z1 between x and

y are generated by using the binary datamorphism of the midpoint

methodmid (x ,y), i.e. z1 = mid (x ,y). The program P is executed

on this mutant test case z1 to classify it. The classification of z1
must be different from one of the original pair of test cases; say

P (z1) , P (x). Thus, we can repeat the above steps with x and z1
as the pair of test cases, and a further mutant z2 can be generated.

This process is repeated a number of times to ensure the distance

between the final pair of points is small enough. See Algorithm 1.

Let n > 0 be any given natural number. We write RT (n) =
⟨a,b⟩ to denote the results of executing Algorithm 1 with n as the

parameter steps and ⟨a,b⟩ as the output.
Assume that the exploratory test system has the following prop-

erties.

(1) There is a constant c > 1 such that

∀x ,y ∈ D.

(
Max {dist (x , z),dist (z,y)}

dist (x ,y)

)
≤ 1/c, (3)

where z =mid (x ,y).
(2) There is a constant dm > 0 such that

∀x ,y ∈ D.(dist (x ,y) ≤ dm). (4)

Then, we have the following theorem about the correctness of

the random target strategy algorithm.

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

Algorithm 1 (Random Target Strategy)

Input:
testSet : Test Pool;
steps: Integer;
mid (x ,y): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select two different test cases x and y in testSet at random;

2: Execute program P on test cases x and y;
3: Check if a pair of Pareto front exits between x to y:
if (x .output = y.output) then return ⟨null ,null⟩
end if
4: Refinement:

for i ← 1 to steps do
z =mid (x ,y);
if (x .output , z.output) then y = z
else x = z;
end if

end for;
a = x ; b = y;
return ⟨a,b⟩;

End

Theorem 1. If RT (n) = ⟨a,b⟩ , ⟨null ,null⟩, then ⟨a,b⟩ is a pair
of Pareto front according to P with respect to dist and δ , if dm/cn < δ .

Proof.
If RT (n) = ⟨a,b⟩ , ⟨null ,null⟩, then, the condition of the If-

statement in step (3) is false. Thus, the loop is executed. It is easy

to see that the For-loop in Step 4 in the algorithm terminates.

We now proof that the following is a loop invariant by induction

on the number i of iterations of the loop body.

dist (x ,y) ≤
dm
ci
∧ P (x) , P (y).

When entering the loop, by assumption (4), the distance between

the data points stored in variable x and y satisfies the following

inequality.

dist (x ,y) ≤ dm

Since the condition of the If-statement is false, we have that

P (x) = x .output , y.output = P (y).

Therefore, the loop invariant is true for i = 0.

Assume that the loop invariant is true for i = n ≥ 0.

After the execution of the loop body one more time (i.e. i = n+1),
by applying the Hoare logic of the If-statements in the loop body,

the distance d ′x between the data points stored in variables x and y
will become either dist (x , z) or dist (z,y), where z =mid (x ,y). By
assumption (3), in both cases we have that

d ′x ≤ Max {dist (x , z),dist (z,y)} ≤ dist (x ,y)/c ≤ dm/c
n+1.

By the condition of the If-statement in the loop body and the prop-

erty (1), applying Hoare logic we have that, after the execution

of the loop body, the data points stored in variables x and y have

the property that P (x) , P (y). Therefore, the condition is a loop

invariant according to Hoare logic.

When the loop exits, i = steps = n. By Hoare logic, after execut-

ing the assignment statements a = x and b = y, we have that

dist (a,b) ≤ dm/c
n ∧ P (a) , P (b).

Therefore, the theorem is true by Definition 1. □
The algorithm of random target strategy can be run multiple

times to generate a number of pairs for the Pareto front.

Example 1. For example, applying the random target strategy to
the running example, we can obtain a test set shown in Figure 3 when
1000 pairs of test cases are selected at random from a test set of 300
random test cases. A total of 641 pairs of Pareto front test cases were
generated. The success rate in generating a pair for the Pareto front
is 64.1%. The set of Pareto front pairs shows clearly the boundary
between the subdomains classified by the software.

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Figure 3: Pareto Front Generated by Random Target

In this example, the number of steps n is 20. Since the data space
D = [0, 2π] × [−1, 1], if the distance function dist (x ,y) is Eucl (x ,y),
we have that dm = 2

√
π 2 + 1. By the definition ofmid (x ,y), we have

that
Max ({dist (x , z),dist (y, z)})

dist (x ,y)
= 1/2.

So, c = 2. By Theorem 1, for the distance δ between each pair in the
Pareto front, we have that

δ ≤
dm
c20
=

√
π 2 + 1

2
19
.

Note, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable in Figure 3. □

3.2 Directed Walk Strategy
A variation of the random target strategy is to start with one test

case (rather than a pair) and apply a unary datamorphism repeatedly

until a test case of different classification is found. Then, the Pareto

front between these two test cases is searched for in the same

way as for the random target strategy. In this strategy, the unary

datamorphism (i.e. a mutation operator) is the traversal method.

The repeated application of the mutation operator makes a ‘walk’

in one direction until a test case in a different class is found or gives

up the exploration if we have gone too far (i.e. too many iterations).

Note that, a walk in one direction may not be able to find a

data point in a different class. In that case, the algorithm returns

⟨null ,null⟩. Letm,n > 0 be any given natural numbers. We write

DW (m,n) = ⟨a,b⟩ to denote the results of executing Algorithm

2 with m as the walking distance and n as the number of steps
and ⟨a,b⟩ as the output. Assume that the exploratory test system

satisfies assumption (3) and has the following property.

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

Algorithm 2 (Directed Walk)

Input:
TestSet : test set;
walkDistance: integer;
steps: Integer;
d (x): Unary datamorphism;

mid (x ,y): Binary datamorphism;

Output:
a, b: Test Case;

Begin
1: Select a test cases x in testSet at random;

2: Execute program P on test case x ;
3: Walk in one direction as follows:

Bool found = false;
for i ← 1 towalkinдDistance do

y = d (x);
Execute software on test case y;
if (x .output , y.output) then

f ound = true; break;
else x = y;
end if

end for
4: Check if a Pareto front can be found:

if (¬f ound) then return ⟨null ,null⟩;
end if
5: Refinement

for i ← 1 to steps do
z =mid (x ,y);
if (x .output , z.ouptut) then y = z;

else x = z;

end if;
end for
a = x ; b = y;
return ⟨a,b⟩;

End

There is a constant ds > 0 such that

∀x ∈ D. (dist (x ,d (x)) ≤ ds) . (5)

where ds is called the step size of the traversal method d (x). Then,
we have the following correctness theorem for the directed walk

algorithm.

Theorem 2. If DW (m,n) = ⟨a,b⟩ , ⟨null ,null⟩, then, ⟨a,b⟩ is a
pair in the Pareto front according to P with respect to dist and δ , if
ds/c

n < δ , where n is the number of steps.

Proof. If DW (m,n) = ⟨a,b⟩ , ⟨null ,null⟩, then the condition of the

If-statement in step (4) is false. Thus, the For-loop of Step (5) is

executed. It is easy to see that the For-loop in Step 5 Refinement in
the algorithm terminates.

Similar to the proof of Theorem 1, by the definiton of ds and

assumption (5), the following is a loop invariant of the loop by

induction on the number i of iterations of the loop body.

dist (x ,y) ≤
ds
ci
∧ P (x) , P (y).

When the loop exits, i = steps = n. By Hoare logic, after execut-

ing the assignment statements a = x and b = y, we have that

dist (a,b) ≤ ds/c
n ∧ P (a) , P (b).

Therefore, the theorem is true by Definition 1. □

Example 2. For example, starting from 1000 random test cases
using the directed walk strategy with the upward (x) datamorphism
as the unary traversal method, a set of 161 pairs of Pareto front were
generated; shown in Figure 4. The set of Pareto front pairs also shows
clearly parts of the boundaries between classes. The success rate of
finding a pair of Pareto front on one test case is 16.1%.

In this example, the number n of steps is also 20. By the definition
of upward (x) traversal method, we have that ds = 0.2, if the distance
function dist (x ,y) is Eucl (x ,y). As in Example 1, by the definition
ofmid (x ,y), we have that c = 2. By Theorem 2, for the distance δ
between each pair of Pareto front, we have that

δ ≤
ds
c20
= 0.2 ×

1

2
20
.

Again, the distance between the test cases in each pair of Pareto front
is so small that they are not visually distinguishable, so they appear
as one dot in Figure 4. □

Welcome to Morphy Test Runner

Version 1.3: Oct. 27, 2019

Loading Test Specification class SinClassify

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Figure 4: Pareto Fronts Generated by Directed Walk

3.3 RandomWalk Strategy
If multiple traversal methods are available, a random walk can be

performed by selecting the direction of the next step at random.

This is similar to the random walk testing in hyperlink/web GUI

test. The algorithm is given below.

We write RW (m,n) = ⟨a,b⟩ to denote the results of executing

Algorithm 3 with m as the walking distance and n as the steps
and ⟨a,b⟩ as the output. Assume that the exploratory test system

satisfies assumption (3) and has the following property. There is a

constant ds > 0 such that

∀x ∈ D.∀di ∈W .(dist (x ,di (x)) ≤ dsm). (6)

where dsm is called the maximal step size of the traversal methods

di (x) ∈W . Then, we have the following correctness theorem for

the algorithm of random walk strategy.

Theorem 3. If RW (m,n) = ⟨a,b⟩ , ⟨null ,null⟩, then, ⟨a,b⟩ is
a pair of Pareto front according to P with respect to dist and δ , if
dsm/c

n < δ , where n is the steps.

Proof. If RW (m,n) = ⟨a,b⟩ , ⟨null ,null⟩, then, the condition of the

If-statement in step (4) is false. Thus, the For-loop of Step (5) is

executed. It is easy to see that the For-loop in Step 5 Refinement in
the algorithm terminates.

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

Algorithm 3 (Random Walk Strategy)

Input:
testSet : Test Set;
walkinдDistance: Integer;
steps: Integer;
d1 (x), · · · ,dk (x): Unary datamorphism; k > 1

mid (x ,y): Binary datamorphism;

Output:
a,b: Test Case;

Begin
1: Select a test case x in testSet at random;

2: Execute program P on test case x ;
3: Walking at random to search for test case in a different class:

Bool f ound = false;
for i ← 1 towalkinдDistance do

Get a random integer r in the range [1,k]
y = dr (x);
Execute program P on test case y;
if (x .output , y.output) then

f ound = true; break;
else x=y;
end if

end for
4: Check if a Pareto front can be found:

if (¬f ound) then return ⟨null ,null⟩;
end if
5: Refinement:

for i ← 1 to steps do
z =mid (x ,y);
if (x .output , z.ouptut) then y = z;
else x = z;

end if
end for
a = x ; b = y;
return ⟨a,b⟩;

End

Similar to the proof of Theorem 1, by the definiton of dsm and

assumption (6), we can prove that the following is a loop invariant

of the loop by induction on the number i of iterations of the loop
body.

dist (x ,y) ≤
dsm
ci
∧ P (x) , P (y).

When the loop exits, i = steps = n. After executing the assign-
ment statements a = x and b = y, the following is true by Hoare

logic.

dist (a,b) ≤ dsm/c
n ∧ P (a) , P (b).

Therefore, the theorem is true by Definition 1. □

Example 3. For example, by applying the random walk strategy
on a test set containing 300 random test cases, 1000 random walks
generated 805 pairs of Pareto front test cases shown in Figure 5, where
the walking distance was 20 steps.

In this example, the number n of steps is also 20. By the defini-
tion of upward (x), downward (x), le f tward (x) and riдhtward (x)
traversal methods, we have that ds = 0.2, if the distance function

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 100

Start making seed test cases.

-- Making seed test cases by using RandomValue100

-- 100 test cases generated.

Finished making seed test cases.

== Total number of test cases in test pool: 200

Start making seed test cases.

-- Making seed test cases by using RandomValue100

Figure 5: The Pareto Fronts Generated by RandomWalk

dist (x ,y) is Eucl (x ,y). As in Example 1 and 2, by the definition of
mid (x ,y), we have that c = 2. By Theorem 3, the distance δ between
each pair of Pareto front satisfies the following inequality.

δ ≤
ds
c20
= 0.2 ×

1

2
20
. □

4 EXPERIMENTS
Controlled experiments with the exploratory test strategies have

been conducted using the automated datamorphic testing tool Mor-

phy to study their test effectiveness. This section report the results

of the experiments.

4.1 Design of the Experiments
4.1.1 Objectives of the Experiments. As discussed in the previous

sections, exploration strategies are designed to test classification

applications. They aim to find the borders between subdomains

of the classifications. The goal of the experiments is to study the

factors that have effect on the effectiveness of these test strategies

in terms to their capability of finding the Pareto fronts between

subdomains. The measurement of test effectiveness is the number

of test executions per border points found by the test strategy.

It is worth noting that the experiments are not for comparison

of the strategies, which each has its own suitable applications.

4.1.2 Subject applications. The experiments are carried out with

ten classification applications shown in Figure 6. These applications

are on the same input domain, i.e. two-dimensional real numbers

in the range of [0, 2π] × [−1, 1].

4.2 Experiment process and the results
For each subject application, three exploration strategies are used

with various parameters. Each test is repeated for 10 times using the

testing tool Morphy and the average of the data is used to analyse

the results.

4.2.1 Experiments with the directed walk strategy. The experiments

used various numbers of random test cases from 200 to 1200 as

shown in Table 1; here, the column #Seed TCs is the number of seed

test cases in the experiment. These seed test cases are generated at

random from the uniform distribution. From each seed test case, one

walk in one direction is made for up to 20 steps. The experiments

used the upward datamorphism. The column Avg #Runs in Table 1

gives the average number of test executions of the subject program

under test. The column Avg #mutant TC gives the average number

of mutant test cases generated; these are test cases on the borders

of the clusters.

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea

(a) Box 1 (b) Box 2

(c) Circle 1 (d) Circle 2

(e) Line 1 (f) Line 2

(g) Triangle 1 (h) Triangle 2

(i) Sin 1 (j) Sin 2

Figure 6: Illustration of the sample applications

Table 1: Experiments Date of The Directed Walk Strategy

Subject #Seeds
(=#Walks)

Avg
#Runs

Avg
#Mutants

Avg
#Runs/Mutant Subject #Seeds

(=#Walks)
Avg
#Runs

Avg
#Mutants

Avg
#Runs/Mutant

200 4205.70 11.40 368.92 200 4223.40 46.80 90.24
400 8413.80 27.60 304.85 400 8442.20 84.40 100.03
600 12620.80 41.60 303.38 600 12668.80 137.60 92.07
800 16827.60 55.20 304.85 800 16891.40 182.80 92.40
1000 21033.40 66.80 314.87 1000 21108.00 216.00 97.72
1200 25236.70 73.40 343.82 1200 25339.80 279.60 90.63
200 4207.50 15.00 280.50 200 4218.20 36.40 115.88
400 8416.40 32.80 256.60 400 8442.20 84.40 100.03
600 12624.50 49.00 257.64 600 12657.70 115.40 109.69
800 16835.60 71.20 236.46 800 16883.90 167.80 100.62
1000 21046.90 93.80 224.38 1000 21102.50 205.00 102.94
1200 25255.30 110.60 228.35 1200 25319.70 239.40 105.76
200 4221.20 42.40 99.56 200 4237.80 75.60 56.06
400 8437.00 74.00 114.01 400 8476.80 153.60 55.19
600 12657.60 115.20 109.88 600 12712.00 224.00 56.75
800 16877.50 155.00 108.89 800 16956.20 312.40 54.28
1000 21099.60 199.20 105.92 1000 21188.80 377.60 56.11
1200 25312.00 224.00 113.00 1200 25426.20 452.40 56.20
200 4216.90 33.80 124.76 200 4233.90 67.80 62.45
400 8435.00 70.00 120.50 400 8465.10 130.20 65.02
600 12651.70 103.40 122.36 600 12698.80 197.60 64.27
800 16869.40 138.80 121.54 800 16927.10 254.20 66.59
1000 21088.20 176.40 119.55 1000 21160.00 320.00 66.13
1200 25300.90 201.80 125.38 1200 25398.20 396.40 64.07
200 4205.20 10.40 404.35 200 4221.60 43.20 97.72
400 8411.70 23.40 359.47 400 8444.20 88.40 95.52
600 12618.50 37.00 341.04 600 12672.50 145.00 87.40
800 16822.80 45.60 368.92 800 16888.70 177.40 95.20
1000 21028.90 57.80 363.82 1000 21112.70 225.40 93.67
1200 25232.80 65.60 384.65 1200 25341.40 282.80 89.61

Triangle 1

Line 2

Sin 2

Triangle 2

Box 1 Box2

Circle 1 Circle 2

Line 1

Sin 1

The experimental data shows that the number of mutant test

cases (i.e. the pairs of test cases in the Pareto front) generated by

using the directed walk strategy increases linearly with the number

of walks; see Figure 7. Similarly, the number of test executions is

also linear with respect to the number of walks. In Figure 7, the X
axis is the number of random seed test cases, which equals number

of walks, and the Y axis of (a) and (b) are the average numbers of

mutant test cases and test executions, respectively. The average

numbers of test executions on various subject programs are so close

to each other that they are not visually separable in Figure 7(a).

The test effectiveness is measured in term of the number of test

executions per mutant test case generated. It is fairly invariant for

each subject while the number of random seed test cases varies

 (a) Average number of test executions (b) Average number of mutant test cases generated

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

26,000

200 400 600 800 1000 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 Line 2

Sin 1 Sin 2

Traimgle 1 Triangle 2

0

50

100

150

200

250

300

350

400

450

500

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Traingle 1 Triangle 2

 (a) Average number of test executions (b) Average number of mutant test cases generated

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

26,000

200 400 600 800 1000 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 Line 2

Sin 1 Sin 2

Traimgle 1 Triangle 2

0

50

100

150

200

250

300

350

400

450

500

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Traingle 1 Triangle 2

(a) Average Number of Executions (b) Average Number of Mutants

Figure 8. Test results with various number of random seed test cases

The test effectiveness measured in term of the number of test executions per mutant test case generated is fairly
invariant for each subject while the number of random seed test cases varies from 200 to 1200; see Figure 9,
where the X axis is the number of random seed test cases, the Y axis is the average effectiveness measured in
terms of the number of test executions per mutant test case generated.

Figure 9. Average number of test executions per mutant generated

The experiment data also show that the test effectiveness vary significantly for different subject programs, ranging
from around 200 test executions per mutant to nearly 1900 test executions per mutant. Figure 10 gives the overall
average effectiveness of testing various subject programs.

0

50

100

150

200

250

300

350

400

450

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1

Box 2

Circle 1

Circle 2

Line 1

LIne 2

Sin 1

Sin 2

Traingle 1

Triangle 2

Figure 10. Overall effectiveness of directed walk for various subjects

(b) Experiments with the random walk strategy

There are two parameters in a testing using the random walk strategy: (1) the number of seed test cases, and (2)
the number of walks starting from the seed test cases. Two sets of experiments were designed and conducted. The
first is with a fixed number of seed test cases but variable numbers of random walks. The second is with a fixed
number of random walks but variable numbers of random seeds. In the first case, the fixed number of seed test
cases is 200, while the number of walks vary from 200 to 1200. The results are given in Table 3.

Table 3. Results of experiments with the random walk strategy (200 seeds with variable number of walks)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

Box 1 Box 2 Circle 1 Circle 2 Line 1 Line 2 Sin 1 Sin 2 Triangle 1 Triangle 2

(c) Average Test Executions Per Mutant (d) Overall Test Effectiveness

Figure 7: Results of The Directed Walk Strategy

from 200 to 1200; see Figure 7(c), where the Y axis is the average

test effectiveness. The experiment data also show that the test

effectiveness varies significantly for different subject programs; see

Figure 7(d), which gives the overall average effectiveness of testing

various subject programs.

4.2.2 Experiments with the random walk strategy. There are two
parameters in the random walk strategy: (1) the number of seed

test cases, and (2) the number of walks starting from the seed test

cases. Two sets of experiments were designed and conducted. The

first is with a fixed number of seed test cases (200 test cases) but

variable numbers of random walks (range from 200 to 1200). The

second is with a fixed number of random walks (800 walks) but

variable numbers of random seeds (range from 200 to 1200).

Table 2 gives the result data of the first set of experiments.

Table 2: Experiments Data of The RandomWalk Strategy

Subject #Walks Avg
#Runs

 Avg
#Mutants

Avg
#Runs/Mutant Subject #Walks Avg #Runs Avg

#Mutants
Avg

#Runs/Mutant
200 4429.40 118.80 37.28 200 4704.40 247.60 19.00
400 8950.60 323.00 27.71 400 9457.20 561.00 16.86
600 13526.00 601.20 22.50 600 14067.60 864.60 16.27
800 18126.60 858.00 21.13 800 18691.30 1186.20 15.76
1000 22706.50 1126.60 20.15 1000 23397.70 1523.40 15.36
1200 27386.00 1439.80 19.02 1200 27900.20 1850.60 15.08
200 4484.60 155.60 28.82 200 4735.40 236.00 20.07
400 8976.00 376.00 23.87 400 9330.30 528.40 17.66
600 13491.80 681.00 19.81 600 13939.40 841.40 16.57
800 18069.60 975.60 18.52 800 18551.60 1171.80 15.83
1000 22567.20 1305.40 17.29 1000 23094.90 1517.80 15.22
1200 27152.80 1622.20 16.74 1200 27685.00 1846.40 14.99
200 4677.00 213.20 21.94 200 4638.30 252.20 18.39
400 9281.90 487.60 19.04 400 9074.50 564.40 16.08
600 13860.30 769.00 18.02 600 13590.90 891.60 15.24
800 18464.00 1090.40 16.93 800 18017.30 1218.20 14.79
1000 22929.80 1388.20 16.52 1000 22466.60 1567.40 14.33
1200 27491.00 1711.80 16.06 1200 26891.00 1917.80 14.02
200 4731.10 235.20 20.12 200 4703.10 295.20 15.93
400 9342.90 516.20 18.10 400 9241.60 606.60 15.24
600 13891.00 824.40 16.85 600 13765.30 950.60 14.48
800 18436.60 1114.60 16.54 800 18346.50 1303.00 14.08
1000 23084.50 1454.00 15.88 1000 22946.20 1674.00 13.71
1200 27613.20 1772.20 15.58 1200 27440.00 2006.80 13.67
200 4380.70 121.80 35.97 200 4694.60 242.60 19.35
400 8728.70 328.60 26.56 400 9318.20 554.80 16.80
600 13146.50 577.20 22.78 600 13955.60 854.20 16.34
800 17561.20 859.40 20.43 800 18530.40 1182.60 15.67
1000 21984.90 1150.80 19.10 1000 23015.10 1505.80 15.28
1200 26387.20 1432.40 18.42 1200 27635.90 1844.40 14.98

Box 1

Circle 1

Line 1

Sin 1

Triangle 1

Box2

Circle 2

Line 2

Sin 2

Triangle 2

The results of the experiments show that the average number

of test executions and the average number of mutant test cases

generated is linear in the number of random walks; see Figure 8.

The test effectiveness increases with the number of walks; see

Figure 8. Although the overall average test effectiveness varies

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

 (a) Average number of test executions (b) Average number of mutant test cases generated

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

26,000

28,000

200 400 600 800 1000 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 Line 2

Sin 1 Sin 2

Traimgle 1 Triangle 2

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Triangle 1 Triangle 2

 (a) Average number of test executions (b) Average number of mutant test cases generated

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

22,000

24,000

26,000

28,000

200 400 600 800 1000 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 Line 2

Sin 1 Sin 2

Traimgle 1 Triangle 2

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Triangle 1 Triangle 2

(a) Average Number of Executions (b) Average Number of Mutants

Figure 12. Test results with various number of random walks

However, the test effectiveness increases with the number of walks; see Figure 13. Although the overall average
test effectiveness varies from subject programs, the differences on test effectiveness are much smaller than the
directed walk strategy as shown in Figure 14.

Figure 13. Test effectiveness of the random walk strategy

As shown in Figure 13, the test effectiveness for testing subject programs Box 1, Triangle 1 and Circle 1 are poorer
than those for testing other subjects. This is also shown in Figure 14, where the overall average of test
effectiveness for testing various subject programs is depicted.

12

14

16

18

20

22

24

26

28

30

32

34

36

38

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Triangle 1 Triangle 2

Figure 14. Overall average test effectiveness of the random walk strategy

Experiments with the random walk strategy were also carried out with fixed number of walks but variable numbers
of seed test cases. The experiment results are shown in Table 2 below.

Table 4. Results of experiments with the random walk strategy (800 walks with variable number of seeds)

0.00

5.00

10.00

15.00

20.00

25.00

30.00

Box 1 Box 2 Circle 1 Circle 2 Line 1 Line 2 Sin 1 Sin 2 Triangle 1 Triangle 2

(c) Average Executions Per Mutant (d) Overall Test Effectiveness

Figure 8: Results of The RandomWalk Strategy

between subject programs, the differences on test effectiveness are

much smaller than the directed walk strategy. As shown in Figure

8(c) and (d), the test effectiveness for testing subject programs Box

1, Triangle 1 and Circle 1 is less than those for the other subjects.

The second set of experiments were with fixed number of walks

but variable numbers of seed test cases. Table 3 shows the results of

the experiment in which 800 walks were run with variable number

of seeds.

Table 3: Experiments Data of Variable Number of Test Cases

Subject #Seeds Avg
#Runs

 Avg
#Mutants

Avg
#Runs/Mutant Subject #Seeds Avg #Runs Avg

#Mutants
Avg

#Runs/Mutant
200 18204.30 860.20 21.16 200 18733.40 1193.20 15.70
400 17946.90 669.40 26.81 400 18831.90 1094.00 17.21
600 17833.10 582.00 30.64 600 18979.10 1069.80 17.74
800 17775.10 494.40 35.95 800 18983.50 997.00 19.04
1000 17794.20 468.00 38.02 1000 19067.10 972.20 19.61
1200 17761.10 437.80 40.57 1200 19109.10 968.20 19.74
200 18034.30 957.20 18.84 200 18500.70 1168.80 15.83
400 18007.00 794.20 22.67 400 18703.00 1067.80 17.52
600 18051.80 696.20 25.93 600 18786.90 1004.60 18.70
800 18095.10 638.00 28.36 800 18793.40 935.80 20.08
1000 18101.30 622.80 29.06 1000 18904.50 928.20 20.37
1200 18042.40 559.40 32.25 1200 18972.40 900.60 21.07
200 18440.20 1095.20 16.84 200 18027.10 1225.20 14.71
400 18536.10 963.00 19.25 400 18214.20 1125.60 16.18
600 18644.00 916.20 20.35 600 18445.90 1056.60 17.46
800 18691.70 874.60 21.37 800 18553.70 1012.00 18.33
1000 18706.30 830.20 22.53 1000 18574.90 973.00 19.09
1200 18778.40 804.80 23.33 1200 18622.20 967.80 19.24
200 18497.70 1125.00 16.44 200 18360.40 1304.40 14.08
400 18712.90 1044.60 17.91 400 18483.70 1195.40 15.46
600 18776.70 962.80 19.50 600 18754.80 1166.20 16.08
800 18888.80 937.60 20.15 800 18767.80 1124.00 16.70
1000 18883.30 883.60 21.37 1000 18848.20 1098.20 17.16
1200 18938.40 872.80 21.70 1200 18946.30 1075.40 17.62
200 17582.10 840.40 20.92 200 18489.80 1212.80 15.25
400 17514.60 648.60 27.00 400 18644.30 1096.00 17.01
600 17485.20 518.80 33.70 600 18705.20 1018.80 18.36
800 17446.70 449.80 38.79 800 18840.00 991.60 19.00
1000 17490.80 428.40 40.83 1000 18910.40 972.80 19.44
1200 17495.20 387.40 45.16 1200 18948.30 931.80 20.34

Box2

Circle 2

Line 2

Sin 2

Triangle 2

Box 1

Circle 1

Line 1

Sin 1

Triangle 1

For the second set of experiments, as shown in Figure 9, the

number of test executions increases as the number of seed test

cases increases, while the number of mutant test cases generated

decreases. Therefore, the test effectiveness in terms of average

number of test executions per mutant generated decreases as the

number of seed test cases increases as shown in Figure 9(b).

Figure 9(c) also confirms the observations on test effectiveness

made in the first set of experiments. That is, the test effectiveness

for subject programs Triangle 1, Box 1 and Circle 1 are obviously

poorer than the other subjects. The reason for this phenomenon

will be discussed in Subsection 4.3.

As shown in Figure 15, in general, the number of test executions increases as the number of seed test cases increases,
while the number of mutant test cases generated decreases. Therefore, the test effectiveness in terms of average
number of test executions per mutant generated decreases as the number of seed test cases increases as shown in
Figure 16.

Subject #Seeds Avg
#Runs

 Avg
#Mutants

Avg
#Runs/Mutant Subject #Seeds Avg #Runs Avg

#Mutants
Avg

#Runs/Mutant
200 18204.30 860.20 21.16 200 18733.40 1193.20 15.70
400 17946.90 669.40 26.81 400 18831.90 1094.00 17.21
600 17833.10 582.00 30.64 600 18979.10 1069.80 17.74
800 17775.10 494.40 35.95 800 18983.50 997.00 19.04
1000 17794.20 468.00 38.02 1000 19067.10 972.20 19.61
1200 17761.10 437.80 40.57 1200 19109.10 968.20 19.74
200 18034.30 957.20 18.84 200 18500.70 1168.80 15.83
400 18007.00 794.20 22.67 400 18703.00 1067.80 17.52
600 18051.80 696.20 25.93 600 18786.90 1004.60 18.70
800 18095.10 638.00 28.36 800 18793.40 935.80 20.08
1000 18101.30 622.80 29.06 1000 18904.50 928.20 20.37
1200 18042.40 559.40 32.25 1200 18972.40 900.60 21.07
200 18440.20 1095.20 16.84 200 18027.10 1225.20 14.71
400 18536.10 963.00 19.25 400 18214.20 1125.60 16.18
600 18644.00 916.20 20.35 600 18445.90 1056.60 17.46
800 18691.70 874.60 21.37 800 18553.70 1012.00 18.33
1000 18706.30 830.20 22.53 1000 18574.90 973.00 19.09
1200 18778.40 804.80 23.33 1200 18622.20 967.80 19.24
200 18497.70 1125.00 16.44 200 18360.40 1304.40 14.08
400 18712.90 1044.60 17.91 400 18483.70 1195.40 15.46
600 18776.70 962.80 19.50 600 18754.80 1166.20 16.08
800 18888.80 937.60 20.15 800 18767.80 1124.00 16.70
1000 18883.30 883.60 21.37 1000 18848.20 1098.20 17.16
1200 18938.40 872.80 21.70 1200 18946.30 1075.40 17.62
200 17582.10 840.40 20.92 200 18489.80 1212.80 15.25
400 17514.60 648.60 27.00 400 18644.30 1096.00 17.01
600 17485.20 518.80 33.70 600 18705.20 1018.80 18.36
800 17446.70 449.80 38.79 800 18840.00 991.60 19.00
1000 17490.80 428.40 40.83 1000 18910.40 972.80 19.44
1200 17495.20 387.40 45.16 1200 18948.30 931.80 20.34

Box2

Circle 2

Line 2

Sin 2

Traingle 2

Box 1

Circle 1

Line 1

Sin 1

Traingle 1

17,000

17,500

18,000

18,500

19,000

19,500

200 400 600 800 1000 1200

 (a) Average number of test executions (b) Average number of mutant test cases generated

Figure 15. Test results with various number of seed test cases

Figure 16. Test effectiveness of the random walk strategy at various number of seed test cases

Figure 16 also confirms the observations on test effectiveness made in the experiments with fixed number of seeds
and variable numbers of walks. That is, the test effectiveness for testing subject programs Triangle 1, Box 1 and Circle
1 are obviously poorer than testing other subjects. The reason of this phenomenon will be discussed in Subsection
D.

(c) Experiments with the aimed walk strategy

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

200 400 600 800 1000 1200

Box 1

Box 2

Circle 1

Circle 2

Line 1

LIne 2

Sin 1

Sin 2

Triangle 1

Triangle 2

12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1
Box 2
Circle 1
Circle 2
Line 1
LIne 2
Sin 1
Sin 2

(a) Average Number of Executions (b) Average Number of Mutants

 (a) Average number of test executions (b) Average number of mutant test cases generated

Figure 15. Test results with various number of seed test cases

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

200 400 600 800 1000 1200

Box 1

Box 2

Circle 1

Circle 2

Line 1

LIne 2

Sin 1

Sin 2

Triangle 1

Triangle 2

12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Triangle 1 Triangle 2

(c) Average Test Executions Per Mutant

Figure 9: Results of the Variable Number of Seeds

4.2.3 Experiments with the random target strategy. The random
target strategy only has one parameter: the number of pairs of test

cases selected at random. The experiments are conducted with this

parameter ranging from 200 to 1200. The experiment data are given

in Table 4 below.

Table 4: Experiments Data of The Random Target Strategy

Subject #Seeds
(=#Walks)

Avg
#Runs

Avg
#Mutants

Avg
#Runs/Mutant Subject #Seeds

(=#Walks)
Avg
#Runs

Avg
#Mutants

Avg
#Runs/Mutant

200 728.70 55.60 13.11 200 2240.50 206.60 10.84
400 1133.80 93.60 12.11 400 4203.60 400.80 10.49
600 1755.20 155.60 11.28 600 6355.00 615.60 10.32
800 2083.90 188.40 11.06 800 8145.90 794.60 10.25
1000 2790.00 259.00 10.77 1000 10146.00 994.60 10.20
1200 3518.00 331.80 10.60 1200 12370.00 1217.00 10.16
200 1037.10 86.40 12.00 200 2090.80 191.80 10.90
400 1724.30 152.80 11.28 400 3903.00 370.60 10.53
600 2675.50 247.60 10.81 600 5891.50 569.20 10.35
800 3444.00 324.40 10.62 800 7843.90 764.40 10.26
1000 4436.00 423.60 10.47 1000 9748.00 954.80 10.21
1200 5292.00 509.20 10.39 1200 11412.00 1121.20 10.18
200 2088.10 191.60 10.90 200 2506.50 233.60 10.73
400 4114.10 391.80 10.50 400 4876.10 468.00 10.42
600 6235.70 603.60 10.33 600 7039.80 684.00 10.29
800 8044.00 784.40 10.25 800 9321.90 912.20 10.22
1000 10182.00 998.20 10.20 1000 12056.00 1185.60 10.17
1200 11904.00 1170.40 10.17 1200 14116.00 1391.60 10.14
200 2189.90 201.80 10.85 200 2651.30 248.00 10.69
400 4129.10 393.20 10.50 400 5197.80 500.20 10.39
600 6243.50 604.40 10.33 600 7727.60 752.80 10.27
800 8394.00 819.40 10.24 800 10172.00 997.20 10.20
1000 10186.00 998.60 10.20 1000 12596.00 1239.60 10.16
1200 12076.00 1187.60 10.17 1200 15192.00 1499.20 10.13
200 522.70 34.80 15.02 200 2016.30 184.40 10.93
400 830.20 63.40 13.09 400 4147.10 395.00 10.50
600 971.40 77.20 12.58 600 5783.60 558.40 10.36
800 1403.80 120.40 11.66 800 7573.80 737.40 10.27
1000 1835.90 163.60 11.22 1000 9791.90 959.20 10.21
1200 1872.00 167.20 11.20 1200 11170.00 1097.00 10.18

Triangle 1

Line 2

Sin 2

Triangle 2

Box 1 Box2

Circle 1 Circle 2

Line 1

Sin 1

The data show that the average number of test executions and

the average number of mutant test cases generated are linear in the

number of walks for all subject programs as shown in Figure 10.

The test effectiveness increases with the number of walks since

the average number of test executions needed to generate a mutant

test cases decreases with the number of walks increases. The test

effectiveness of the random target strategy is given in Figure 10(b).

The data show that the test effectiveness for subjects Triangle 1,

Box 1 and Circle 1 are significantly poorer than those for the other

subjects. This is also shown clearly in Figure 10(d).

4.3 Discussion
From the experiments, we observed the following phenomena.

Exploratory Datamorphic Testing of Classification Applications AST ’20, October 7–8, 2020, Seoul, Republic of Korea
Again, the average number of test executions and the average number of mutant test cases generated are linear to
the number of walks for all subject programs as shown in Figure 18.

 (a) Average number of test executions (b) Average number of mutant test cases generated

Figure 18. Experiment results with various number of aimed walks selected at random

The test effectiveness increases with the number of walks since the average number of test executions needed to
generate a mutant test cases decreases with the number of walks increases. The overall test effectiveness of the
aimed walk strategy is given in Figure 20. The data show that the test effectiveness for subjects Triangle 1, Box 1 and
Circle 1 are significantly lower than those for the other subjects. This is also shown clearly in Figure 20.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

200 400 600 800 1000 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 Line 2

Sin 1 Sin 2

Traimgle 1 Triangle 2

0

200

400

600

800

1,000

1,200

1,400

1,600

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Traingle 1 Triangle 2

Again, the average number of test executions and the average number of mutant test cases generated are linear to
the number of walks for all subject programs as shown in Figure 18.

 (a) Average number of test executions (b) Average number of mutant test cases generated

Figure 18. Experiment results with various number of aimed walks selected at random

The test effectiveness increases with the number of walks since the average number of test executions needed to
generate a mutant test cases decreases with the number of walks increases. The overall test effectiveness of the
aimed walk strategy is given in Figure 20. The data show that the test effectiveness for subjects Triangle 1, Box 1 and
Circle 1 are significantly lower than those for the other subjects. This is also shown clearly in Figure 20.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

200 400 600 800 1000 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 Line 2

Sin 1 Sin 2

Traimgle 1 Triangle 2

0

200

400

600

800

1,000

1,200

1,400

1,600

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Traingle 1 Triangle 2

(a) Average number of executions (b) Average number of Mutants

Figure 19. Test effectiveness of the aimed walk strategy

Figure 20. Overall average test effectiveness of the aimed walk strategy

10

11

12

13

14

15

16

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Traingle 1 Triangle 2

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Box 1 Box 2 Circle 1 Circle 2 Line 1 Line 2 Sin 1 Sin 2 Triangle 1 Triangle 2

Figure 19. Test effectiveness of the aimed walk strategy

Figure 20. Overall average test effectiveness of the aimed walk strategy

10

11

12

13

14

15

16

200 300 400 500 600 700 800 900 1000 1100 1200

Box 1 Box 2

Circle 1 Circle 2

Line 1 LIne 2

Sin 1 Sin 2

Traingle 1 Triangle 2

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Box 1 Box 2 Circle 1 Circle 2 Line 1 Line 2 Sin 1 Sin 2 Triangle 1 Triangle 2

(c) Average Test Executions Per Mutant (d) Overall Test Effectiveness

Figure 10: Results of the Random Target Strategy

4.3.1 Factors influencing Test Effectiveness. The test effectivgess
of the strategies on various subject programs are summarised in

Table 5 and depicted in Figure 11, where the larger the number, the

lower the test effectiveness.

Table 5: Summary of Test Effectiveness

Subject Directed
walk

Random
walk

Random
target

Box 1 323.45 24.63 11.49

Box 2 93.85 16.39 10.38

Circle 1 247.32 20.84 10.93

Circle 2 105.82 16.72 10.41

Line 1 105.82 18.08 10.41

Line 2 55.76 15.48 10.33

Sin 1 122.35 17.18 10.38

Sin 2 64.75 14.52 10.31

Triangle 1 370.38 23.88 12.46

Triangle 2 93.19 16.40 10.41

Avg 158.27 18.41 10.75

Subject Directed walk Random walk Random Target Directed/Random
Box 1 323.45 24.63 11.49 13.13
Box 2 93.85 16.39 10.38 5.73
Circle 1 247.32 20.84 10.93 11.87
Circle 2 105.82 16.72 10.41 6.33
Line 1 105.82 18.08 10.41 5.85
Line 2 55.76 15.48 10.33 3.60
Sin 1 122.35 17.18 10.38 7.12
Sin 2 64.75 14.52 10.31 4.46
Triangle 1 370.38 23.88 12.46 15.51
Triangle 2 93.19 16.40 10.41 5.68
Avg 158.27 18.41 10.75 8.60

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

Bo
x 1

Bo
x 2

Cir
cle
 1

Cir
cle
 2

Lin
e 1

Lin
e 2 Sin

 1
Sin
 2

Tr i
ang

le 1

Tr i
ang

le 2 Avg

Chart Title

Directed walk
Random walk
Random Target

Figure 11: Test Effectiveness on Subject Programs

The data show that for each strategy, the test effectiveness varies

significantly according to the different subject programs. However,

for each strategy, the experimental data show that the test effec-

tiveness for Box 1 is lower than that for Box 2. The effectiveness for

Circle 1 is lower than that for Circle 2, and so on. This phenomenon

is not an coincidence.

Theoretically speaking, the test effectiveness for the directed

walk strategy is determined by the probability that there is a border

between two subdomains in the right direction from a test case and

within the walking distance. For the random target strategy, the

test effectiveness is determined by the probability that two random

test cases fall in two different subdomains. For the random walk

strategy, the test effectiveness is determined by the probability that

there is a border nearby to a randomly selected test case. These

properties have a number of implications.

First, given a classification application, one should select themost

effective strategy to explore the Pareto fronts betweem subdomains

based on the understanding of the application. The data obtained

from our experiments are not sufficient to compare the strategies

on their effectiveness. This is because the probability of finding a

pair in the Pareto front heavily depends on the size and location

of the subdomains of the classification application. There is no

benchmark on such parameters in real applications as far as we

know. Our subjects in the experiments may not be representative

of the distribution of the parameters in real applications.

Second, it provides a good explanation of the observations made

in the previous sections that the number of pairs generated for the

Pareto front is a linear function of the number of seed test cases or

number of walks since they are independent.

Moreover, although the test effectiveness is mostly determined

by the size, shape and location of the subdomains that the program

classifies, for directly walk and random walk strategies, it is also

affected by the number of steps walked and the number of itera-

tions in the refinement. The number of steps walked influences the

probability of finding two points in different subdomains and also

the total number of test executions. The longer the walk, the more

likely one is to find two points in different subdomains, but this

requires more test executions. Thus, a balance between these two

contradictory factors of test effectiveness must be made to achieve

the best test effectiveness.

Finally, the number of iterations in the refinement loop controls

the distance betwen the pair of test cases in the Pareto fronts gener-

ated. It has no impact on the probablity of finding two data points

in different subdomains, but does have an affect on test effective-

ness. The shorter distance mutations requires more iterations, thus

more test executions, and therefore, is less effective. For random

walk and directed walk strategies, the number of iterations can

be selected for correctness theorems proved in this paper. For the

random target strategy, usually more iterations are required than

the other two strategies.

4.3.2 Validity of the Experiments. As pointed out at the beginning

of the section, the experiments are designed to determine which

factors have an effect on the test effectiveness of the strategies.

The subject programs used in the controlled experiments have

subdomains that are of typical shapes in data mining and machine

learning applications [1, 5, 8]. As discussed above, the conclusion

that we draw from the experiments are not depending on specific

features of subdomains such as the size and location. However, as

discussed above, they do provide insight on the factors that affect

test effectiveness. Therefore, we are confident that the conclusions

drawn from the experiments are valid.

AST ’20, October 7–8, 2020, Seoul, Republic of Korea H. Zhu and I. Bayley

5 CONCLUSION
5.1 Related Work
Exploratory testing was originally proposed for improving GUI-

based manual testing of web-based applications, which also often

lacks a clear definition of software correctness [12]. The name is

given to a common practice in industry that existed for many years

without guidance until recently. The notion of exploratory strategy

was first defined byWhittaker [12] as guidance on how to manually

explore the software in the most effective way.

Research on testing AI applications has been active in recent

years [2, 4, 6]. It is interesting to observe that datamorphisms are ac-

tually used to testing AI applications like driverless vehicles [11, 15].

Our case study with face recognition shows that test automation

can be improved by reusing datamorphisms if they are explicitly

defined and supported by a testing tool [17, 18, 21]. However, the

testing of classification applications has not been studied inten-

sively. An interesting work by Xie et. al. is the development of a

set of metamorphic relations as test oracles for the clustering and

classification applications [13]. In [14], a case study is reported

that uses these metamorphic relations to test a clustering function

generated by the data mining tool Weka, in which datamorphisms

are also used although they are not explicitly defined.

5.2 Main Contributions
The main contribution of this paper is the adaptation of the no-

tion of exploratory strategy to the testing of AI applications. We

demonstrated that such strategies can be formally defined in the

datamorphic testing framework. They have also been implemented

in the automated datamorphic testing tool Morphy [17].

In this paper, we studied the theoretical properties of three ex-

ploratory strategies for the discovery of the Pareto front of clas-

sification applications. We formally proved the correctness of the

algorithms that implement the strategies.

We have also conducted controlled experiments with the ex-

ploration strategies. Experimental data demonstrated the factors

that have impact on test effectiveness of these strategies. The ob-

servations obtained from experiments provide a guidance to the

selection of the strategies for a given classification application and

the choices of parameters to apply the strategies.

5.3 Future Work
The data spaces of the running example and the subjects of the

experiments have fixed dimensions on continuous values. This is

for the purpose of easily visualising the results. The strategies are

independent of the continuity and dimensions of the data space,

thus they are also applicable to other types of classification applica-

tions. The proofs of their correctness are also independent of these

features, so the correctness theorems also hold for such data spaces.

It will be interesting to conduct experiments using different types

of data spaces, such as image, audio, video and text values. We are

conducting case studies with real machine learning applications to

evaluate the practical usability of the strategies.

There are also many possible variations of the strategies pro-

posed and studied in this paper. In particular, the algorithms in this

paper do not need a test morphisms that measure the distances

between two test cases. If such a test morphism is available, the ter-

mination of the refinement loop can be determined by the distances

between the pair of test cases.

The analysis of the phenomena observed in the experiments

suggested that the test effectiveness depended on the probability of

finding two test cases that are in different classification subdomains.

A formal proof of this property will give a solid foundation for

understanding these strategies and providing precise guidance to

the selection of the parameters of the strategies. Thus, it is worth

further research.

REFERENCES
[1] C. Aggarwal. 2015. Data Mining: The Textbook. Springer.
[2] X. Bai, J. Li, and A. Ulrich (Eds.). 2018. Proc. of IEEE/ACM 13th International

Workshop on Automation of Software Test (AST 2018),. IEEE Computer Society,

Gothenburg, Sweden.

[3] T. Y. Chen, F-C. Kuo, H. Liu, P-L. Poon, D. Towey, T. H. Tse, and Z. Q. Zhou. 2018.

Metamorphic testing: A review of challenges and opportunities. ACM Comput.
Surv. 51, 1, Article 4 (Jan 2018), 27 pages. https://doi.org/10.1145/3143561

[4] A. Gotlieb, M. Roper, and P Zhang (Eds.). 2019. Proc. of The First IEEE International
Conference on Artificial Intelligence Testing (AITest 2019). IEEE Computer Society,

Los Alamitos, CA, USA. https://doi.org/10.1109/AITest.2019

[5] M. Mohri, A. Rostamizadeh, and A. Talwalkar. 2012. Foundations of Machine
Learning. The MIT Press.

[6] M. Roper and Z. Q. Zhou (Eds.). 2020. Proc. of The Second IEEE International
Conference on Artificial Intelligence Testing (AITest 2020). IEEE Computer Society,

Los Alamitos, CA, USA. (In Press) pages.

[7] S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen. 2018. Metamorphic testing:

testing the untestable. IEEE Software (2018), 1–1. https://doi.org/10.1109/MS.

2018.2875968

[8] S. Shalev-Shwartz and S. Ben-David. 2014. Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press.

[9] L. Shan and H. Zhu. 2009. Generating structurally complex test cases by data

mutation: A case study of testing an automated modelling tool. Comput. J. 52, 5
(Aug 2009), 571–588.

[10] M. Sutton, A. Greene, and P. Amini. 2007. Fuzzing: Brute Force Vulnerability
Discovery. Addison-Wesley.

[11] Y. Tian, K. Pei, S. Jana, and B Ray. 2018. DeepTest: Automated testing of deep-

neural-network-driven autonomous cars. In Proc. of The 40th IEEE/ACM Int’l
Conf. on Software Engineering (ICSE 2018). IEEE Computer Society, Gothenburg,

Sweden, 303–314.

[12] J. A. Whittaker. 2009. Exploratory Software Testing: Tips, Tricks, Tours, and Tech-
niques to Guide Test Design. Pearson Education. https://books.google.co.uk/

books?id=BsB0NpkcdgIC

[13] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen. 2011. Testing

and validating machine learning classifiers by metamorphic testing. Journal of
Systems and Software 84 (2011), 544–558.

[14] S. Yang, D. Towey, and Z. Zhou. 2019. Metamorphic exploration of an unsuper-

vised clustering program. In Proc. of IEEE/ACM 4th International Workshop on
Metamorphic Testing (MET 2019). IEEE Computer Society, 48–54.

[15] Z. Q. Zhou and L. Sun. 2019. Metamorphic testing of driverless cars. Commun.
ACM 62, 3 (March 2019), 61–67.

[16] H. Zhu. 2015. JFuzz: A tool for automated Java unit testing based on data mutation

and metamorphic testing methods. In Proc. of The 2nd Int’l Conf. on Trustworthy
Systems and Their Applications (TSA 2015). 8–15.

[17] H. Zhu, I. Bayley, D. Liu, and X. Zheng. 2019. Morphy: A Datamorphic Software
Test Automation Tool. Technical Report OBU-ECM-AFM-2019-01. School of

Engineering, Computing and Mathematics, Oxford Brookes University, Oxford,

UK. http://arxiv.org/abs/1912.09881

[18] H. Zhu, I. Bayley, D. Liu, and X. Zheng. 2020. Automation of Datamorphic

Testing. In Proc. of 2nd IEEE International Conference on Artificial Intelligence
Testing (AITest 2020). In Press.

[19] H. Zhu, P. Hall, and J. May. 1997. Software unit test coverage and adequacy. ACM
Computing Survey 29, 4 (Dec. 1997), 366–427.

[20] H. Zhu, D. Liu, I. Bayley, R. Harrison, and F. Cuzzolin. 2018. Datamorphic Testing:
A Methodology for Testing AI Applications. Technical Report OBU-ECM-AFM-

2018-02. School of Engineering, Computing and Mathematics, Oxford Brookes

University, Oxford OX33 1HX, UK. http://arxiv.org/abs/1912.04900

[21] H. Zhu, D. Liu, I. Bayley, R. Harrison, and F. Cuzzolin. 2019. Datamorphic

Testing: A Method for Testing Intelligent Applications. In Proc. of The First
IEEE International Conference on Artificial Intelligence Testing (AITest 2019). IEEE
Computer Society, Los Alamitos, CA, USA, 149–156. https://doi.org/10.1109/

AITest.2019.00018

https://doi.org/10.1145/3143561
https://doi.org/10.1109/AITest.2019
https://doi.org/10.1109/MS.2018.2875968
https://doi.org/10.1109/MS.2018.2875968
https://books.google.co.uk/books?id=BsB0NpkcdgIC
https://books.google.co.uk/books?id=BsB0NpkcdgIC
http://arxiv.org/abs/1912.09881
http://arxiv.org/abs/1912.04900
https://doi.org/10.1109/AITest.2019.00018
https://doi.org/10.1109/AITest.2019.00018

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Overview of Datamorphic Testing Method
	2.2 Classification Applications
	2.3 Exploratory Test Systems
	2.4 The Running Example

	3 Exploration Strategies
	3.1 Random Target Strategy
	3.2 Directed Walk Strategy
	3.3 Random Walk Strategy

	4 Experiments
	4.1 Design of the Experiments
	4.2 Experiment process and the results
	4.3 Discussion

	5 Conclusion
	5.1 Related Work
	5.2 Main Contributions
	5.3 Future Work

	References

