
A Load Factor and its Impact on the Performance
of a Multicore System with Shared Memory

Dmytro Nedzelky1, Maryna Derkach1, Inna Skarga-Bandurova2,1, Larisa Shumova1, Svitlana Safonova1,
Volodymyr Kardashuk1

1Volodymyr Dahl East Ukrainian National University, 59-A Tsentralny Prospect, Severodonetsk, Ukraine, [nedzelsky,
derkach, shumova, safonova, kardashuk]@snu.edu.ua, http://snu.edu.ua

2Oxford Brookes University, iskarga-bandurova@brookes.ac.uk, https://www.brookes.ac.uk

Abstract—The paper investigates the influence of the
load factor of the shared memory on the efficiency of
multicore systems. Typically, all cores serve threads of one
program in parallel by the OpenMP programming
technology or execute independent programs. There are no
interactions between threads and independent programs,
but conflicts can occur when accessing the shared memory.
Models of program execution in one core and a multicore
computer are developed, considering the probabilities of
successful calls and service times of all levels of the shared
memory subsystem. The load factor of the first level cache is
determined through the ratio of the L1 cache load time to
the total execution time of the program. The execution of
various types of programs is simulated. A technique for the
acceleration coefficient of a multicore computer based on
the total load factor of the shared memory has been
proposed. Based on this insight, we apply our model to
determine the acceleration coefficient for 4-, 8-, 12- and 16-
core systems for different combinations of system
parameters.

Keywords— multi-core system; cache memory; shared
memory; load factor; system performance

I. INTRODUCTION

Significant extension of data volumes and complexity
of the programs run by computer systems raised the
problem of increasing their performance, scalability and
efficient utilization of the processor cores. Despite
significant progress in hardware implementation, system
performance analysis and load factor on the multicore
system are still challenging tasks. Typically, the
efficiency of a multicore system is defined using the
acceleration coefficient of parallel program execution or
through the set of programs when using k cores. In
reality, the acceleration achieved depends on many
factors. In particular, not all of the program parts can be
parallelized. Therefore, the program will remain
consecutive fragments, the runtime of which will not
depend on the number of cores used. Amdahl’s law [1]
considers the ideal situation when executing parallel
programs in multicore systems without considering many
other conditions.

The performance of multicore computers is
investigated by testing real programs [2-5] or applying
synthetic tests [6-8]. It was noted that until the specific
threshold, the efficiency of multicore systems virtually
does not change with increasing the core number, which
contradicts with the single-core version, and after
reaching the threshold, it becomes decreasing. The loss of
performance can be significant. For example, according
to both Intel and AMD [9], the utilization rate of one core
can be decreased to several tenths; the more cores being
involved, the lower the utilization rate of one core can be
achieved. There are several reasons for this phenomenon,
for example:
 decrease in the frequency of the cores due to thermal

load;
 insufficiently efficient load balancing;
 idle kernels due to conflicts when accessing shared

computer resources.
It can be argued that the conflicts for accessing the

shared memory is one of the main factors for the
decreasing utilization rate and overall performance of a
multicore system.

Several recent studies have proposed different
techniques to evaluate performance of multicore
systems and parallel applications. In [9], the efficiency
of multicore systems was investigated, taking into
account the influence of the load on the total memory. To
solve the problems in the shared memory and improve the
multicore system performance, a memory scheduling
strategy was proposed in [10]. Several papers were
devoted to examinating different programming models in
heterogenous multicore systems [11, 12]. A
comprehensive survey on parallel performance problems
on shared memory multicore systems is represented in
[13]. However, a methodilogy for computing the intensity
of the memory requests has not been detected. To the best
of our knowledge, most of the previous studies on the
efficiency of multicore systems lack a holistic
methodology for determining the calls’ generation
intensity to the shared memory depending on the
properties of the programs being executed with an
acceptable error. Another aspect of this topic is the

efficiency of multicore computers through the
acceleration factors and parameters of the computer
cores. Therefore, the purpose of this paper is to study the
intensity of calls generation to shared memory, the load
factor of shared memory on the efficiency of a multicore
computer, depending on the number of cores, properties
executed by program kernels, parameters of kernels and
shared memory.

The remainder of this paper is organized as follows.
Section 2 presents a model of program execution in one-
core system. Section 3 describes the proposed multicore
system model and methodology. Section 4 presents the
results achieved with proposed methodology. Finally, our
conclusions and future work are described in Section 5.

II. THE MODEL OF PROGRAM EXECUTION IN ONE
CORE

When a program is executed in one core, the
following processes proceed in parallel: (1) all commands
are read and prepared for the execution; (2) cache
memories of three levels L1 (first-level cache), L2
(second-level cache), and L3 (third-level cache) are run
and executed; (3) each request activates and runs
functional units; and if necessary, requests are made to
the computer shared memory. The entire execution time
of some processes can be predicted with acceptable
accuracy. For example, the busy times of the memory
subsystem at all levels (cache memory and shared
memory) can be achieved from the parameters of the core
structure and levels of the memory subsystem, i.e. the
number of memory access instructions in the program
being executed, the cache structure memories of all
levels, service times for requests at each level of the
memory subsystem, the probability of successful hits in
the cache memory of all levels.

However, the execution times of a number of
processes cannot be predicted. In particular, without
knowing the exact structure of the program being
executed (sequential ordering of arbitrary commands,
which commands depend on the results of previous
commands, how many conditional transitions, how many
commands of each kind, etc.), it is impossible to predict
the degree of parallelism of the execution of commands
in functional devices and the combination them with
accesses to the memory subsystem [14]. The entire
execution time of the program will be no less than the
execution time of the longest stage of the parallel cycle.

When executing memory access instructions, the core
accesses the L1 cache with the average time interval
between adjacent requests. The request being successfully
handled with probability PL1D is serviced in time tL1D, and
the command ends. In case of failure in the L1 cache with
probability (1 – PL1D), a request to the L2 cache is
generated. If successfully handled with probability PL2,
the request is served by the L2 cache in time tL2 and the
command ends. In case of failure in the L2 cache with
probability (1 – PL1D) ⸱(1 – PL2), a request is generated to

the controller of the segment of the L3 cache. The request
being successfully handled with probability PL3, is
served by the controller of the third-level cache segment
in time tL3 and the command ends. When the buffer of
requests to the controller of the L3 cache segment is full,
the core is blocked (stops generating requests). If there
are no requests in the input buffers of the third-level
cache segment controllers, they are idle. In case of failure
in the L3 cache segment with probability (1 – PL1D) ⸱(1 –
PL2)⸱(1 – PL3), a request is likely to be generated and
placed in the input buffer of the memory controller. As
long as the buffer of requests to the core memory
controller is full, the controller of the L3 cache segment is
also blocked (stops accepting new requests). Core
memory executes requests in time tОП. In the absence of
the memory access request, it is idle.

The flow of requests from the core to the L1 cache is
random. The randomness of the request flow depends
largely from the type of program including the number of
memory access instructions, the order in which they
follow in the program, the execution time of the program,
the parameters of the core and the entire computer, the
properties of the locality of the program, etc. The actual
form of the law of distribution in intervals between
requests is unknown. From these perspectives, the
following assumptions have been made.

The simplest kind of random process is the sequence
of independent trials represented as a sum of n random
processes without predominance of one of them. It can be
described with the exponential distribution of time
intervals between successive events from n = 4-5 [15].
Therefore, for our model, we also assumed that the
process of accessing the first level cache is the simplest
with the exponential distribution of time between
requests.

It is also known that utilizing the exponential law of
time distribution between successive requests is one of
the “hard” modes of operation. Performance indicators, in
this case, are minimal. Under other laws of distribution,
they are seen to be higher and even better. This fact
suggests using exponential law to achieve the lower
boundaries of the system performance indicators.

Finally, we assumed that it is known: (1) NLD the
number of memory access instructions in a specific
program; (2) processing time for each cache level; (3)
processing time in shared memory; (4) processing times
by the communication subsystem; and (5) the likelihood
of successful accesses to each cache level. Keeping this
in mind, let us denote the full runtime of the program in
the core by TFULL. The busy times of the corresponding
levels will be as follows
L1 cache busy time: TL1D = NLD⸱tL1D
L2 cache busy time: TL2 = NLD⸱(1 – PL1D)⸱tL2
L3 cache busy time: TL3 = NLD⸱(1 – PL1D)⸱(1 – PL2) ⸱ tL3
Core memory busy time:

TFULL= NLD⸱(1 – PL1D)⸱(1 – PL2) ⸱(1 – PL3)⸱ tFULL

Where tLD1, tL2, tL3, tFULL denote service times of one
request by the L1, L2, L3 cache-memories and core
memory, respectively; PLD1, PL2, PL3 are the probabilities
of successful hits in the L1, L2, L3 cache memories,
respectively.

We determine the utilization (load) of the first level
cache by introducing αLD1 coefficient as ration of TL1D to
TFULL:

αLD1 = TL1D / TFULL.
This coefficient enables the simulation of the

execution of various types of programs. For example,
αLD1 = 0.2 means the L1 cache occupancy time is 0.2 of
the total program execution time. At the same time, there
is no need to make any assumptions about the
composition of the commands in the program, the
organization of the pipeline for processing commands in
the core, the specific types of dependencies between the
teams, and execution times of individual operations in
functional devices.

 The intensity of generating requests by one core to
the first level cache

1 1
1

1 1

LD L D LD L D
L D

FULL L D LD L D

N N
T t N t

For the rest of the levels, requests generating intensity
can be computed similarly.

The second level cache L2
1

2 1 1 1
1

*(1) *(1)L D
L L D L D L D

L D

P P
t

The third level cache
1

3 2 2 1 2
1

* (1) * (1) * (1)L D
L L L L D L

L D

P P P
t

The intencity for core memory
1

1 2 3
1

(1)(1)*(1)L D
MEM L D L L

L D

P P P
t

Then the load factor of memory by single core:

1 1 2 3
1

(1)(1)*(1)*i MEM
MEM L D L D L l

L D

tP P P
t

III. THE MULTICORE SYSTEM MODEL

The further study of the effectiveness of a multicore
system is based on the set of assumptions that (1) the
computer has one processor chip with k cores; (2) buffers
of sufficient size are implemented to achieve utilization
coefficients close to the limit values; (3) all cores execute
independent threads, which are independent and do not
interact with each other, or they are threads of a well-
parallelized program without interaction between them;
(4) all processor cores use individual segments of the
third-level cache memory, and there are no core accesses
to “foreign” controllers of the L3 segments; (5) L3 cache
is a combination device. This means that a new request
can only be completed after completing the previous
ones; (6) shared memory is also a combinational type
device. A new request can be completed only after the

completion of the previous request; (7) requests flow
from the cores to the shared resource of a multicore
computer (random access memory) is the simplest with
the exponential distribution of intervals; (8) the requests
flow served by shared memory is also the simplest with
the exponential distribution law.

Considering the assumptions made, the functioning of
a multicore computer can be represented as a two-phase
queuing model. The first phase, consisting of k cores,
generates memory requests. The total intensity of the
request generation by k cores is

1
1 2 3

1 1 1

(1)(1)*(1)
k k

i i i iL D
MEM MEM L D L L

i i L D

P P P
t

In the case when all the cores perform identical (or
close in composition) flows, we obtain

 1
1 2 3

1

* * (1) * (1) * (1)L D
MEM L D L l

L D

k P P P
t

The second phase runs the shared memory with the
intensity of the execution of the requests expressed as

1/ MEMt . The core proceeds to generate a new request
only after the generation of the previous request has been
completed. When the buffer is full in the shared memory
controller, the core is locked until free space appears in
the buffer. The shared memory controller proceeds to
execute a new request only after processing the previous
request. If there are no commands ready for processing in
the buffer and the core has not generated another request
at this time interval, then the memory controller is idle.

The memory controller selects requests for execution
from the buffer following the FIFO method. Fig. 1 shows
a simplified block diagram of a multicore computer
model.

Equivalent
core Buffer MemoryInstructions

Figure 1. Simplified block diagram of a multicore computer model

We assume that at its most basic level, a multicore
computer model with one equivalent core could be equal
to a k-core model with buffer and memory since (1) the
productivity of the phases of the requests generation are
equal; (2) buffers have the same size; (3) memory
performances are equal; (4) the method of choosing the
requests for execution are the same; and (5) the
conditions for blocking the phases of generating requests
are the same.

Then the process of investigating the functioning of
the model can be described by following five steps: (1)
Determine the states of the model; (2) Compile the state
graph of the model; (3) Compile the system of equations
for the probabilities of the model states; (4) Solve the
system of equations; (5) Investigate the indicators of the
efficiency of the model functioning depending on the
values of various parameters.

The coefficient for equivalent kernel utilization rate
can be expressed as

1

2

1
1

n
MEM
n
MEM

H

if 1MEM and

1
2

nH
n

 if 1MEM , where MEM denotes the total

load factor of the shared memory. Load factors of
memory with one core and k cores

1 1 2 3
1

* (1) * (1) * (1) *i MEM
MEM L D L D L l

L D

tP P P
t

1

k
i

MEM MEM
i

 .

IV. RESULTS

By using proposed coefficients, it is possible to
simulate the execution of different types of programs. At
the same time, this releases from making assumptions
about the composition of the commands in the program,
the organization of the command processing pipeline in
the kernel, the specific types of dependencies between the
commands, the times of execution of individual
operations in functional devices that can be useful is
some practical applications. The resulting values of the
total load factors of memory for 4-, 8-, 12- and 16-core
systems for different combinations of parameters are
given in Table 1 and Table 2.

TABLE I. TOTAL LOAD FACTORS OF MEMORY FOR 1L Dt =4Τ;

2Lt =10Τ; 3Lt =30Τ; MEMt =150 Τ

αLD1 PL1D PL2 PL3 MEM

k=4 k=8 k=12 k=16
0.2 0.7 0.80 0.90 0.180 0.360 0.540 0.720

0.8 0.90 0.97 0.018 0.036 0.054 0.072
0.3 0.7 0.80 0.90 0.270 0.540 0.810 1.080

0.8 0.90 0.97 0.027 0.054 0.081 0.108
0.4 0.7 0.80 0.90 0.360 0.720 1.080 1.440

0.8 0.90 0.97 0.036 0.072 0.108 0.144
0.5 0.7 0.80 0.90 0.450 0.900 1.350 1.800

0.8 0.90 0.97 0.045 0.090 0.135 0.180
0.6 0.7 0.80 0.90 0.540 1.080 1.620 2.160

0.8 0.9 0.97 0.054 0.108 0.162 0.216
0.7 0.7 0.80 0.90 0.630 1.260 1.890 2.520

0.8 0.90 0.97 0.063 0.126 0.189 0.252
0.8 0.7 0.80 0.90 0.720 1.440 2.160 2.880

0.8 0.90 0.97 0.072 0.144 0.216 0.288

TABLE II. TOTAL LOAD FACTORS OF MEMORY FOR 1L Dt =4Τ;

2Lt =12Τ; 3Lt =36Τ; MEMt =180Τ

αLD1 PL1D PL2 PL3 MEM

k=4 k=8 k=12 k=16
0.2 0.7 0.80 0.90 0.2160 0.4320 0.6480 0.8640

0.8 0.90 0.97 0.0216 0.0432 0.0648 0.0864
0.3 0.7 0.80 0.90 0.3240 0.6480 0.9720 1.296

0.8 0.90 0.97 0.0324 0.0648 0.0972 0.1296
0.4 0.7 0.80 0.9 0.4320 0.8640 1.2960 1.7280

0.8 0.90 0.97 0.0432 0.0864 0.1296 0.1728
0.5 0.7 0.80 0.9 0.5400 1.0800 1.6200 2.1600

0.8 0.90 0.97 0.0540 0.1080 0.1620 0.2160
0.6 0.7 0.80 0.90 0.6480 1.2960 1.9440 2.5930

0.8 0.9 0.97 0.0648 0.1296 0.1944 0.2593
0.7 0.7 0.80 0.9 0.7560 1.5120 2.2680 3.0240

0.8 0.90 0.97 0.0756 0.1512 0.2268 0.3024
0.8 0.7 0.80 0.9 0.8640 1.7280 2.5920 3.4560

0.8 0.90 0.97 0.0864 0.1728 0.2592 0.3456

The results of the dependence of the acceleration
coefficient S on the parameters of the program and the
multicore system shown in tables 1 and 2 are shown in
table 3.

TABLE III. SYSTEM ACCELERATION COEFFICIENT IF PL1D=0.7;
PL2=0.8; PL3=0.97.

αLD1
k

MEM

form table
1

S
MEM

form table
1

S

0.2

2 0.09 2 0.108 2
4 0.18 4 0.216 4
8 0.36 8 0.432 8
12 0.54 12 0.648 12
16 0.72 16 0.864 16

0.3

2 0.135 2 0.162 2
4 0.27 4 0.324 4
8 0.54 8 0.648 8
12 0.81 12 0.972 12
16 1.08 14.8 1.296 12.3

0.4

2 0.18 2 0.216 2
4 0.36 4 0.432 4
8 0.72 8 0.864 8
12 1.08 11.1 1.296 9.3
16 1.44 11.1 1.728 9.3

0.5

2 0.225 2 0.270 2
4 0.45 4 0.540 4
8 0.90 8 1.080 7.4
12 1.35 8.89 1.642 7.4
16 1.80 8.89 2.160 7.4

0.6

2 0.27 2 0.324 2
4 0.54 4 0.648 4
8 1.08 7.41 1.296 6.2
12 1.62 7.41 1.944 6.2
16 2.16 7.41 2.592 6.2

0.7

2 0.315 2 0.378 2
4 0.63 4 0.756 4
8 1.26 6.35 1.512 5.3
12 1.89 6.35 2.268 5.3
16 2.52 6.35 3.024 5.3

0.8

2 0.36 2 0.432 2
4 0.72 4 0.864 4
8 1.44 5.56 1.728 4.6
12 2.16 5.56 2.592 4.6
16 2.88 5.56 3.456 4.6

From Table III we can see that acceleration
coefficient S of a multicore computer can be determined

as follows: S = k if 1MEM and / MEMS k if
1MEM

V. CONCLUSIONS

The main challenge when using proposed technique is
to determine the load factor of the 1L cache. The value of
this coefficient is largely depends from the number of
memory access instructions in the program and their
relationship with the total number of instructions in the
program, as well as the type of processing instructions,
the presence of various information dependencies
between the instructions and the parameters of the
actuators.

For the specific heavy-duty programs, it is possible to
identify the sections of the program that make the greatest
contribution during execution, to write simplified code
for implementing these sections in a pseudo-assembler.
An analysis of these programs will make it possible to
determine the structure of the program (the number of
memory access instructions, the presence of information
dependencies between the instructions, the type of data
being processed). Knowing the parameters of the
processor (latency of cache memories, their volumes,
execution times of the main operations, frequency),
memory of a specific multi-core computer, as well as the
structure of programs, makes it possible to determine a
specific range of values of the load coefficient of the
cache of the first level and use the proposed method to
determine the coefficient accelerating a multicore
computing system when executing a specific program.

REFERENCES
[1] Amdahl G.M. Validity of the Single-Processor Approach to

Achieving Large Scale Computing Capabilities, Procceding
AFIPS Conference, Vol. 30, (Atlantic City, New Jersey, Apr. 18-
20), AFIPS Press, Reston, Va., 1967, pp. 483-485.

[2] Pakhomov S. Applications for testing processors and PCs: Abbyy
FineReader, WinRAR, Mathworks Matlab and Dassault

SolidWorks with Flow Simulation. November 8, 2016
http://www.ixbt.com/cpu/cpu-testing-part7.shtml.

[3] Pakhomov S. Digital photo editing software as a test for
processors and PC: Adobe Photoshop, Adobe Photoshop
Lightroom and PhaseOne Capture One Pro. November 2, 2016.
http://www.ixbt.com/cpu/cpu-testing-part6.shtml.

[4] Pakhomov S. Video editing software and video content creation as
a test of processors and PC: Adobe Premiere Pro, Magix Vegas
Pro, Magix Movie Edit Pro, Adobe After Effects and Photodex
ProShow Producer. October 24, 2016.
http://www.ixbt.com/cpu/cpu-testing-part5.shtml.

[5] Pakhomov S. Backup applications and FineReader for testing PC
performance. March 11, 2018 http://www.ixbt.com/cpu/cpu-
testing-part6.shtml.

[6] Khizhnyak N. Tests of Core i7-10700K, i5-10600K and i5-
10600KF in Geekbench. 04/20/2020. Permanent URL:
https://3dnews.ru/1008924

[7] Sozinov A. Tiger Lake smashed the Ryzen 7 4800U in the single-
core test, but lost in the overall standings. 08/04/2020. Permanent
URL: https://3dnews.ru/1017377

[8] Parovishnik V. AMD 3rd Gen Threadripper Zen 2 Sharkstooth 32-
Core Beast "kills" all contenders in Benchmark Leak. 29-08-2019.
Permanent URL: https://www.techpowerup.com

[9] IBM documentation: Factors that influence the performance of
shared memory partitions
https://www.ibm.com/docs/en/power8/8408-44E?topic=partitions-
factors-that-influence-performance-shared-memory

[10] Fang, J., Wang, M. & Wei, Z. A memory scheduling strategy for
eliminating memory access interference in heterogeneous
system. J Supercomput 76, 3129–3154 (2020).
https://doi.org/10.1007/s11227-019-03135-7

[11] Lai C., Shi X., Huang M. Efficient utilization of multi-core
processors and many-core co-processors on supercomputer beacon
for scalable geocomputation and geo-simulation over big earth
data. Big Earth Data 2 (2018): 65 - 85.

[12] Lee J.H., Shi W., Gil J.M. (2018) Accelerated bulk memory
operations on heterogeneous multi-core systems. J Supercomput
74(12):6898–6922.

[13] Atachiants, R., Doherty, G.J., & Gregg, D. (2016). Parallel
Performance Problems on Shared-Memory Multicore Systems:
Taxonomy and Observation. IEEE Transactions on Software
Engineering, 42, 764-785.

[14] D. Nedzelskyi, M. Derkach, Y. Tatarchenko, S. Safonova, L.
Shumova and V. Kardashuk, Research of Efficiency of Multi-core
Computers with Shared Memory, 2019 7th International
Conference on Future Internet of Things and Cloud Workshops
(FiCloudW), 2019, pp. 111-114, doi:
10.1109/FiCloudW.2019.00032.

[15] Ross S. Introduction to Probability Models. Acedemic Press. 12
Ed., 2019, 842 p.

