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Abstract
Digital twin, as an important enabling tool for digital transformation, has received increasing attention from researchers and
practitioners since its definitionwas formalised. Especially in the global context and exacerbated byCovid-19, the applications
of the digital twin have offered opportunities for many industries. While the digital twin has already been widely used in
many sectors such as manufacturing and the construction industry—one of the key engines of economic development, is still
lagging behind many other sectors. This study uses the systematic literature review to assess the applications of digital twin
in manufacturing and construction respectively, the benefits it brings, and the impediments to its application. Based on this, a
comparison is made of digital twin applications in the manufacturing and construction industries to draw lessons. This study
concluded that although the use of digital twin in manufacturing is better than construction overall, it is still not reaching its
full potential. Despite many benefits brought by the digital twin to construction during the project lifecycle, the construction
sector faces even greater challenges than manufacturing in digital twin adoption. By comparison, this study drew five lessons
to drive better adoption of the digital twin. The construction industry needs to accelerate the deployment of relevant hardware,
promote the standard unification of digital twin, explore the whole lifecycle application of the digital twin, enhance data
protection, and embrace changes. This study was limited in the scope of data collection. Future research could focus on
gathering information from specific case studies, to produce more comprehensive perspectives.

Keywords Construction sector · Digital Twin · Digital transformation · Manufacturing sector · Lifecycle performance
assessment

Introduction and background

Digitalisation is emerging as a key driver of technologi-
cal innovation, and gradually directing the development and
transformation of many industries (Botkina et al., 2018). A
major element of the digitisation drive and transformation
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is the concept of digital twins. In this digital transforma-
tion era, digital twins, are making a radical impact on a wide
range of industries (Tao&Qi, 2019). This became evenmore
prominent in the recent Covid-19 pandemic, where digital
twin-enabled remote commissioning and information inter-
action offered new solutions for enterprises in blocked or
inaccessible areas (Leng et al., 2021). Through data trans-
mission and updating via sensors, digital twin can be argued
to reflect almost every aspect of a product or process (Qi et al.,
2021). Therefore, the emergence and application of the dig-
ital twin have created great opportunities for the interaction
of the physical and virtual world (Opoku et al., 2021).

The concept of the digital twin has been evolving since its
first formal definition and application prospects were intro-
duced by NASA in 2012 (Glaessgen & Stargel, 2012). A
sector where digital twin has progressively been used and
become dominant is the manufacturing industry. Digital twin
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has served as a crucial hub for the delivery of manufactur-
ing products in the context of smart manufacturing (Lu et al.,
2020b).Digital twin applications have contributed to improv-
ing productivity, reducing product delivery risk, managing
the product lifecycle effectively, and bringing a broad range
of benefits to manufacturing product delivery (Pires et al.,
2019). The diverse application of digital twins in manufac-
turing and the associated improvements in manufacturing
processes and products has attracted the attention of adjacent
industries like the construction industry. The construction
industry is one of the key engines for economic growth and
employment in most countries. For example, the value of the
worldwide construction industry exceeded US$10 trillion,
contributing an average of around 8% of Gross Domestic
Product (GDP) to national economies since 2017 (Opoku
et al., 2021). However, despite the enormous size of the
construction industry, the efficiency of project delivery and
the adoption digital strategies and tools are still concerning.
The construction industry has long been regarded as one of
the least innovative and digitalised sectors, and the lack of
innovative technology use hasmade low project delivery effi-
ciency in construction one of the most recognised problems
(Li et al., 2017; Perera et al., 2020). This is despite the pro-
motion of digitisation by policy makers, and the perceived
benefits of digitisation. In the UK for instance, the govern-
ment through its Construction Strategy policy has mandated
the adoption of digital strategies such as BIM Level 2 (now
BIMStage 2 as per ISO 19650-1 & 2) on all government pro-
cured projects from 2016. The emergence of various smart
technologies and the need to digitise the physical world to
improve construction processes and assets has positioned
digital twins as a potential solution to some of the industry’s
challenges (Ozturk, 2021). Notwithstanding the identified
benefits of digitalisation, and in particular, digital twins for
the construction industry, there is a low adoption rate of these
tools. As it stands, construction has a low adoption rate of
digital twin and lags behind other industrial sectors like man-
ufacturing (Madubuike et al., 2022). Some recent studies
have sought to investigate reasons for such low adoption, and
what could be done by the construction industry to increase
its uptake.Whilst this emerging research provides some good
insights, the construction industry as a whole can learn from
adjacent industries such as manufacturing on how they have
adopted digital technology, what it is been used for, how
they have implemented it at scale, and the benefits that can
be derived from the use of BIM. However, there is currently
little research in the literature comparing the use of digi-
tal twin in manufacturing and construction, and few articles
have focused on drawing lessons by comparing the digital
twin adoption in these two industries. Thus, the aim of this
study is to compare the use of digital twin in project delivery
in themanufacturing and construction industries, and to draw
out insights on how the construction industry can promote the

use of digital twin application. The paper uses a systematic
review methodology to undertake this comparison.

The following research questions will be pursued in order
to achieve the research objectives:

Q1. What is the state of digital twin adoption in the man-
ufacturing product lifecycle? What are the digital twins’
applications and what are the associated barriers to its appli-
cation?
Q2.What is the state of digital twin adoption in the construc-
tion project lifecycle?What are the digital twins’ applications
and what are the associated barriers to its application?
Q3. What are the differences in digital twin applications in
the project (product) lifecycle inmanufacturing and construc-
tion?
Q4.What lessons can be drawn from the comparison between
manufacturing and construction in using digital twin?

The remainder of the paper is structured as follows: “Lit-
erature review” section addresses the origin and definition of
the digital twin as well as the project lifecycle approaches
in manufacturing and construction. “Research Methodol-
ogy” section presents themethodology adopted for the study.
“Findings from the systematic review” section presents the
findings of the systematic review to provide the status of
digital twin application in manufacturing and construction.
This is followed by the discussions in “Discussions” section.
Finally, the paper concludes with a summary of the study,
limitations and suggestions for further research in “Conclu-
sions” section.

Literature review

This section reviews the origin of the digital twin concept
and its definition so as to provide a more comprehensive
understanding of digital twin.

The origin of the digital twin concept

Grieves (2014) introduced the idea of the “digital twin” for
the first time in an industry presentation on product lifecycle
management in 2002. At the time, the term “digital twin”
was used to refer to a digital information structure called
a “mirrored space model” that was created independently
as a descriptive structure only and maintained links to the
physical system throughout its lifecycle (Grieves & Vickers,
2017). In 2005, three elements of the mirrored spaces model,
namely real spaces, virtual spaces and a linking mechanism,
were defined by Grieves (2005). There was no formal adop-
tion of the concept by any industry at the time. It was not until
2012 that the term ‘digital twin’wasfirst adopted in the public
domain byNASA, and in consequence a specific definition of
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Fig. 1 The development of digital twin concept. Adapted from Qi et al. (2021)

the technologywas formulated for the first time (Shafto et al.,
2012). By 2014, the first white paper on the digital twin was
published, reflecting the digital twin evolution from a con-
cept to a number of practical applications (Grieves, 2014).
Since then, digital twins have received increasing attention
from researchers, and publications related to digital twin have
shown rapid growth (Tao et al., 2019b). Relatedly, an increas-
ing number of organisations and institutions such as Siemens,
Gartner, etc. have discussed and investigated the applications
and prospects of digital twin and considered it as one of
the most promising technologies (Qi et al., 2021; Tao et al.,
2019b). Figure 1 provides an overview of the development
of the digital twin concept.

The definition of digital twin

Digital twin has been defined in diverse ways over the years.
Table 1 provides a summary of some of the several definitions
of digital twin proposed by researchers.

In the early days of the emergence of digital twin, the
definition and understanding of the digital twin were not
yet mature due to technical limitations. As the technol-
ogy for capturing, collecting and computing data gradually
developed, the definition of the digital twin has gradually
developed and refined. Core to the recent definitions is
emphasis on digital twin’s core features to include dynamic
bilateral data exchange between the physical and digital
worlds and between physical objects and virtual models
(Grieves, 2014). Moreover, according to Kritzinger et al.
(2018), differing in the level of integration of physical and
digital counterparts, digital twin has been classified into three
types, i.e., digital model, digital shadow and digital twin.
Digital models are the lowest level of integration between
physical and virtual models of the three types. They are
merely digital representations of physical objects without
any automatic information exchange between their physical
and digital objects (Kritzinger et al., 2018). Regarding digital
shadow, the automatic data exchange between physical and
digital objects is only one-way, i.e., changes to the physical
object’s state affect its digital counterpart, but changes to the
digital entity’s state cannot change the physical object’s state

(Kritzinger et al., 2018). Digital twin is the most integrated
physical and digital object, as the automatic data flow allows
for a bidirectional automatic exchange (Borth et al., 2019).

According to Shafto et al. (2012), when NASA first
defined the digital twin, the definition of the digital twin
was given as a multi-physics, multi-scale system that reacted
to the state of the real twin through updates and historical
data. The merit of this definition is its emphasis on the mul-
tifaceted, multiscale nature of the digital twin. However, it
only shows that the digital twin is the digital reflection of real
object and does not reflect the impact of the virtual model on
thephysical entity.Compared to thedefinitions givenbyother
researchers, Bajaj et al. (2016) define and discuss the applica-
tion areas of the digital twins in themechanical, electrical and
software fields, but failed to describe the two-way, real-time
interaction of data. Similarly, according Grieves and Vickers
(2017), they defined the digital twin as an information struc-
ture that comprehensively describes physical objects from the
microscopic atomic level to themacroscopic geometric level,
providing a detailed description of the digital twin model
level, but also did not emphasise the bidirectional interaction
of data between physical and virtual objects. The research
on digital twin by Bolton et al. (2018) focused on the inter-
section of digital and social disciplines, and therefore the
definition given by them places more emphasis on the sim-
ulation function brought by the digital twin and the help it
brings to learning. The definition by Tao et al. (2019b) will
be adopted as the definition of the digital twin in this study
because it captures the essential components of the digital
twin.

Digital Twins, IoT, Intelligentmanufacturing, digitalman-
ufacturing, and smart manufacturing are all terms used to
describe modern manufacturing approaches that leverage
advanced technologies to improve productivity, efficiency,
and flexibility. While there is some overlap between these
concepts, they have distinct characteristics. Digital twins and
IoT play critical roles in all three manufacturing concepts.
The IoT refers to the network of interconnected physical
devices and sensors that collect and exchange data. By
connecting physical assets to digital twins through IoT, man-
ufacturers can monitor and control operations in real-time,
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Table 1 Definitions of the digital twin by different researchers. Source:
by author

No References Definition

1 Shafto et al. (2012) A digital twin is an
integrated multi-physics,
multi-scale, probabilistic
simulation of a vehicle or
system that uses the best
available physical models,
sensor updates, fleet
history, etc., to mirror the
life of its flying twin

2 Rosen et al. (2015) Access to very realistic
models of the current state
of the process and their
own behaviour in
interaction with their
environment in the real
world

3 Bajaj et al. (2016) A unified system model that
can coordinate
architecture, mechanical,
electrical, software,
verification, and other
discipline-specific models
across the system lifecycle

4 Grieves and Vickers (2017) The Digital Twin is a set of
virtual information
constructs that fully
describes a potential or
actual physical
manufactured product
from the micro atomic
level to the macro
geometrical level

5 Bolton et al. (2018) a dynamic virtual
representation of a
physical object or system
across its lifecycle, using
real-time data to enable
understanding, learning
and reasoning

6 Tao et al. (2019b) Digital twin is a real
mapping of all
components in the product
life cycle using physical
data, virtual data and
interaction data between
them

analyze data for insights, and optimize performance and effi-
ciency. Intelligent manufacturing, digital manufacturing, and
smart manufacturing are interconnected concepts that lever-
age advanced technologies. While intelligent manufacturing
emphasizes the use of intelligent systems, digital manufac-
turing focuses on the integration of digital technologies, and
smart manufacturing encompasses both concepts while aim-
ing for a connected and responsivemanufacturing ecosystem.

Table 1 (continued)

No References Definition

7 AIAA and AIA (2020) A set of virtual information
constructs that mimics the
structure, context and
behaviour of an individual
/ unique physical asset, or
a group of physical assets,
is dynamically updated
with data from its physical
twin throughout its life
cycle and informs
decisions that realize
value

8 Semeraro et al. (2021) A set of adaptive models
that emulate the behaviour
of a physical system in a
virtual system getting real
time data to update itself
along its life cycle. The
digital twin replicates the
physical system to predict
failures and opportunities
for changing, to prescribe
real time actions for
optimizing and/or
mitigating unexpected
events observing and
evaluating the operating
profile system

9 ISO 23247-1:2021 (2021) It is a digital representation
of an observable
manufacturing element
with synchronisation
between the element and
its digital representation

10 BSI Flex 260: v1.0 2022-01
(2022)

A digital twin is a digital
representation of an
observable element with a
means to enable a
relationship between the
two elements, when added
to controlling and human
components to fulfil a
function, they form a
cyber-physical system.
The digital twin receives
and transmits information
to the cyber-physical
system, linking the digital
representation of an
element and its
performance in the real
environment

Digital twins and IoT are essential enablers of these manu-
facturing approaches, providing real-time data, simulation
capabilities, and connectivity for monitoring, analysis, and
optimization.
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The underpinning drive of the aforementioned concepts
are the need to develop products and projects in the manu-
facturing and construction sectors respectively. In order to
ensure an effective and high-quality products and projects
concepts such as product development, project development,
Product Lifecycle Management (PLM) and Building Infor-
mationModeling (BIM) have been used. A brief explanation
about these concepts will be examined in the ensuing section.

Product and project development lifecycle
approaches in manufacturing and construction

Product development refers to the process of creating and
bringing a new product or service to the market or improving
an existing one. Project development refers to the process of
transforming a construction project idea into a fully planned
and organized endeavour and goes through sequential stages
or phases that a construction project goes through, from its
initial conception to its completion and handover. PLM is a
comprehensive approach to managing a product’s lifecycle,
from its conceptualization to design, manufacturing, distri-
bution, use, and eventual retirement. BIM, on the other hand,
is a methodology widely used in the architecture, engineer-
ing, and construction (AEC) industry. It involves the creation
and management of digital representations of a building or
infrastructure project throughout its lifecycle, from design to
construction and operation. Given the context of this study,
this study will focus on product and project development for
the manufacturing and construction sectors respectively.

When examining a product’s lifecycle from the manu-
facturer’s perspective, the entire process including concept
generation, design, procurement, manufacturing, and recy-
cling needs to be considered (Cao & Folan, 2012). Liu et al.
(2021) used a four-phase model to describe the lifecycle
of project delivery, i.e., “design”, “manufacturing”, “ser-
vice”, and “retire”. Similarly, a closed-loop lifecycle model
framework with “design”, “manufacturing”, “product use”,
“maintenance, repair and overhaul” (MRO) has been used to
analyse the usage of the digital twin in manufacturing by Tao
et al. (2018). Son et al. (2021) adopted an eight-phase life-
cycle of “concept generation”, “design”, “manufacturing”,
“transportation”, “sales”, “utilization”, “after-sales service”,
“recycle and disposal”. It can be seen that the project delivery
lifecycle of manufacturing projects can vary slightly due to
the different products produced. The manufacturing industry
is large and has awide variety of products. Themodel used by
Son et al. (2021) provides the most comprehensive overview
of the product delivery lifecycle in manufacturing as it con-
tains many phases. In comparison, the lifecycle model used
by Liu et al. (2021) is more concise and contains some of the
phases covered in Son et al. (2021). Drawing from the com-
plementary nature of the lifecyclemodels byLiu et al. (2021),
Tao et al. (2018) and Son et al. (2021), a more encompassing

lifecycle model of manufacturing with seven phases will be
used in this study. The lifecycle includes concept generating,
design, manufacturing, transportation, sales, utilization and
after-sales service, recycling and disposal phases.

In the construction industry, the Association for Project
Management Body of Knowledge, presents six phases of
a project lifecycle to include: concept, definition, deploy-
ment, transition, operation and termination (Murray-Webster
& Dalcher, 2019). Eight phases of the project lifecycle are
identified by the Chartered Institute of Building (CIOB)
as follows: inception, feasibility, strategy, pre-construction,
construction, testing and commissioning, completion, han-
dover and operation, post-completion review and in use
(CIOB, 2014). This classification is similar to theRoyal Insti-
tute of British Architects’ (RIBA) definition of the project
lifecycle, which is strategic definition, preparation and brief-
ing, concept design, spatial coordination, technical design,
manufacturing and construction, handover and use (RIBA,
2020). Opoku et al. (2021) categorised the project lifecycle
into the “design and engineering”, “construction”, “opera-
tion and maintenance”, “demolition and recovery” phases.
Similarly, Yitmen et al. (2021) introduced a construction
lifecycle management model that included “design”, “con-
struction”, “operation”, “maintenance”, and “end-of-life”.
Ozturk (2021) used a construction lifecycle model with five
phases of “initiation”, “design”, “execution”, “operation and
maintenance”, and “demolition” to investigate the role played
by the digital twin. Wilking et al. (2021) proposed a generic
definition of a Digital Twin that can be applied throughout
different sectors. Three main phases have been considered in
the Wilking et al. (2021) definition, which include: Begin-
ning of Life (BoL), Middle of Life (MoL) and End of Life
(EoL).

Overall, these lifecycle models are essentially based on
the design, construction, operation and demolition phases of
the project delivery lifecycle in the construction industry, but
they differ in the level of detail on different phase. Although
the three main phases, BoL, MoL and EoL have been used in
for assessing the applications of digital twin (Wilking et al.,
2021), the phases are so wide with very blurred boundaries.
This led to two or more digital twin applications to easily
be allocated to a certain phase, which could have been allo-
cated to separate phases should a lifecycle with so many
phases had been chosen. Hence, in this study, four phases of
the project lifecycle that include “design and engineering”,
“construction”, “operation and maintenance” and “demoli-
tion and recovery” phases (Opoku et al., 2021) is adopted
for the construction sector. In the manufacturing sector, the
concept generating, design, manufacturing, transportation,
sales, utilisation and after-sales service, recycle and disposal
phases have been adopted.
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Researchmethodology

This study adopts a systematic literature review approach.
It is a method whereby the literature is critically screened
and evaluated using rigorous criteria and then used the out-
come to draw research conclusions (Davis et al., 2014;Gough
et al., 2016). As such, the systematic review is suitable for
assessing the state of knowledgeon aparticular topic (Snyder,
2019). Considering the aim of this study, this research needs
to gather collective evidence on digital twin usage, provid-
ing an overview of the benefits and barriers that exist in their
application. This requires the study to cover as many relevant
articles as possible rather than amore creative data collection
(Snyder, 2019). This sectionwill describe the steps of the sys-
tematic literature review of this study including the sources,
methods and time frame of literature selection, the criteria
used to evaluate and select the literature, and the methods
used to synthesise and analyse the findings.

Research questions formulation

Identifying the questions to be studied is the first step in the
data collection and analysis process. The research questions
that guide this study have been formulated and outlined in
“Introduction and background” section of this paper.

Literature selection criteria definition

After defining the questions to be studied, some inclusion
criteria for the relevant literature need to be established to
regulate the scope of literature selection. Clear criteria would
help to reduce the potential for bias in the literature selec-
tion process (Xiao &Watson, 2019). The literature selection
criteria developed for this study were as:

• The content of the literature is an analysis and discussion
about digital twin applications in manufacturing or con-
struction project lifecycles.

• The benefits of digital twin applications for the manu-
facturing or construction industry or the barriers to its
applications are analysed or discussed by the article.

• The article contributes to the promotion the digital twin
implementation in manufacturing or construction project
lifecycles.

Literature identification

The reliability and validity of secondary data (literature)
depend to a large extent on its source. The selection of reliable
and authoritative sources guarantees a high-quality collection
of literature and it is a key factor in ensuring the validity of

research findings. In this study, the articles collected were
all from academic journals. The Web of Science database is
used for undertaking the search. It is one of the most com-
monly useddatabases in the natural sciences and engineering,
providing an authoritative and reliable source of literature.
The most efficient way to find the list of literature in the
search process is by keyword searching using the database
engine. Advanced search options available inWeb of Science
database were used to improve the efficiency of literature
searches by combining keywords through Boolean opera-
tions. In this study, keywords related to digital twin, manu-
facturing and construction were combined and used to search
and identify the literature. These keywords and combinations
include ‘Digital Twin’AND ‘Manufacturing’; ‘Digital Twin’
AND ‘Production’; ‘Digital Twin’ AND ‘Application in
manufacturing’; ‘Digital Twin’ AND ‘manufacturing’ AND
‘Benefit’; ‘Digital Twin’ AND ‘Production’ AND ‘Benefit’;
‘Digital Twin’ AND ‘Manufacturing’ AND ‘Advantages’;
‘Digital Twin’ AND ‘Production’ AND ‘Advantages’; ‘Dig-
ital Twin’ AND ‘manufacturing’ AND ‘Barrier’; ‘Digital
Twin’ AND ‘Production’ AND ‘Barrier’; ‘Digital Twin’
AND ‘Manufacturing’ AND ‘Challenges’; ‘Digital Twin’
AND ‘Production’ AND ‘Challenges’; ‘Digital Twin’ AND
‘Construction’; ‘Digital Twin’ AND ‘Building’; ‘Digital
Twin’ AND ‘Application in construction’; ‘Digital Twin’
AND ‘construction’ AND ‘Benefit’; ‘Digital Twin’ AND
‘Building’ AND ‘Benefit’; ‘Digital Twin’ AND ‘Construc-
tion’ AND ‘Advantages’; ‘Digital Twin’ AND ‘Building’
AND ‘Advantages’; ‘Digital Twin’ AND ‘construction’
AND ‘Barrier’; ‘Digital Twin’ AND ‘Building’ AND ‘Bar-
rier’; ‘Digital Twin’AND‘Construction’AND‘Challenges’;
‘Digital Twin’ AND ‘Building’ AND ‘Challenges’; ‘Digital
Twin’ AND ‘Project Delivery’. The period for the searchwas
set to the literature published within the last 10 years, i.e.,
journal articles published since the beginning of 2012. The
year 2012 was chosen as the starting point because that was
the year the digital twin concept started gaining popularity
(Shafto et al., 2012).

Evaluation of the literature

The assessment of the quality of the literature consists of
two steps: an initial screening and a detailed reading review.
Firstly, the initial screening included retaining only academic
journal articles, skimming and assessing the titles, abstracts,
keywords and conclusions, and removing duplicates. The ini-
tial screening helped to refine the literature list, excluded
articles that did not match the content of this study, and gave
a general idea of the content of the articles. After the initial
screening, the remaining articles were read in full to assess
the validity of the content. This step ensured that the quality
of the literature is optimised in terms of the best use of the
article collection.
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Analysis and summary of the literature

After the screening and quality assessment process, the lit-
erature needs to be consolidated, categorised, analysed and
summarised according to its content. To ensure a scientific
and structured approach, the systematic literature reviewwas
used to analyse and summarise the literature with the help
of VOSviewer software. The systematic literature review
method was carried out based on the bibliometric analy-
sis. Bibliometrics is a rigorous method used to analyse large
amounts of scientific data, interpret the evolution of specific
fields as well as shed light on emerging areas (Donthu et al.,
2021). Bibliometrics takes a scientific development perspec-
tive and visualises the status of information connections and
research in the field by analysing and integrating multiple
information within the literature, such as co-authorship anal-
ysis and co-citation analysis. Themethod connects important
concepts and information between the literature, allowing for
amore structured and systematic analysis (Zabin et al., 2022).
In addition, VOSviewer software was used for visualizating
the analysis of results of the bibliometric network (van Eck
& Waltman, 2017). VOSviewer can generate images of co-
authorship, keyword co-occurrence, bibliographic coupling,
etc. based on node distance and size, with better visualisa-
tion than other bibliometric analysis software, therefore it
was chosen for this study (Han &Gong, 2021). The observa-
tion and investigation of the images drawn in VOSviewer can
help in the subsequent review. To make the process of data
analysis clearer and more intuitive, the process is illustrated
in Fig. 2.

Findings from the systematic review

This section is a review of the bibliometric analysis results.
Firstly, the process and results of literature gathering and
screening are presented. Then the results of the bibliometric
analysis of the literature related to manufacturing and con-
struction are explained separately. Finally, the results of the
manufacturing and construction sectors are compared with
each other.

Literature collection and screening results

The results of the search by keyword are shown in Table 2 and
3. The first column on the left-hand side of the table repre-
sents the search terms used, with the second column showing
the number of articles obtainedwithin a specified time frame.
The third column shows the output recorded based on screen-
ing by journal publications. Subsequently, by scanning the
title, abstract, keywords aswell as conclusions, the fourth col-
umn of the table shows the journal publications that remain.
After combining results and removing duplicates, as well as

reading the literature in full for detailed filtering, the num-
ber of remaining articles is shown in the fifth column of the
table. Articles were included in this study if they met one of
the three criteria stated in “Literature selection criteria defi-
nition” section. After the screening process, there were 166
and 61 articles relevant to the digital twin applications in
the manufacturing project lifecycle and construction project
lifecycle respectively.

Bibliometric results on themanufacturing sector’s
digital twin profile

Figure 3 shows a summary of the articles by timelines pub-
lished in themanufacturing sector. It shows that from 2017 to
2016 there were very few publications on digital twin appli-
cation cases in themanufacturing project lifecycle. However,
from 2017 onwards, the number of publications grown sig-
nificantly year on year, and the number of publications in
this area is expected to continue to rise. The average annual
growth rate (excluding 2022) being 46.9%. It should be noted
that due to the time of this study, the data on the number of
relevant publications in 2022 is still incomplete and thus does
not form part of the annual growth rate.

The articles were subsequently imported into VOSviewer
to generate a visual overview and also to obtain an idea of
the scientific landscape. The generatedword clouds about the
sources and countries in which the articles were published
are shown in Figs. 4 and 5.

Figure 4 shows that most articles are published in high-
impact journals. The International Journal of Advanced
Manufacturing Technology, Journal of Applied Sciences,
Journal of Manufacturing Systems, Robotics and Computer-
Integrated Manufacturing are the most prominent journals.

The study also sought to identify countries where the pub-
lications are made. The data shows that developed countries
are the major sources of articles regarding digital twin in
manufacturing project delivery. Much of the research come
from developed countries such as Germany, the USA, Singa-
pore, England, Italy, South Korea, Australia and France. This
is not surprising given the nature of their industries and how
technology is used in such countries. It is also worth noting
that a number of developing economies, such as China, South
Africa and Brazil, have also carried out some research about
the digital twin implementation inmanufacturing project life-
cycle, with China making a notable contribution.

Bibliometric results on the construction sector’s
digital twin profile

In the construction sector, the distribution of research lit-
erature about digital twin implementation cases in project
lifecycle over the years is shown in Fig. 6. It shows that
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Fig. 2 Data analysis process. Source by authors

Table 2 Literature screening for
digital twin in manufacturing.
Source by authors

Search terms Outcome Screening

1st 2nd 3rd

‘Digital Twin’ AND ‘Manufacturing’ 1824 1117 160 166

‘Digital Twin’ AND ‘Production’ 1321 762 102

‘Digital Twin’ AND ‘Product delivery’ 31 20 3
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Table 3 Literature screening for
digital twin in construction.
Source by authors

Search terms Outcome Screening

1st 2nd 3rd

‘Digital Twin’ AND ‘Construction’ 502 350 42 61

‘Digital Twin’ AND ‘Building’ 1078 710 52

‘Digital Twin’ AND ‘Project delivery’ 50 28 2

Fig. 3 Number of publications
about the digital twin usage in
manufacturing. Source by authors

around 2017, research publications on digital twin in the con-
struction sector began to emerge from around 2018, and have
gradually increased over time. Although the statistics on the
number of relevant publications in 2022 are still incomplete
due to the time of this study, the increasing trend in the num-
ber of publications is still evident. Publications has on the
average increased by about 63% annually from 2019 to 2021.

Figures 7 and 8 shows the word cloud information by
journals and countries.

Figure 7 shows that the majority of studies relating to dig-
ital twin deployment in construction project delivery came
from journals such as Buildings, Sustainability, Applied Sci-
ences, Automation in Construction and Advances in Civil
Engineering. A large proportion of the articles are published
in journals related to construction, civil engineering or con-
struction and energy.

The publications are spread amongst 21 countries. The
main source countries for publications were found to be
China, the UK and the Germany, with 23, 14 and 11 pub-
lications respectively. As can be seen in Fig. 8, although
developed countries such as the UK, Germany, Australia,
Italy and Singapore still account for the majority of research
sources, many developing countries such as China, Romania,

Saudi Arabia and Qatar have also contributed to investiga-
tions into the adoption by construction sector of digital twin
in the project lifecycle.

Comparison of the bibliometric results
in manufacturing and construction

To capture the similarities and differences, the bibliomet-
ric analysis results of the implementation of digital twin in
manufacturing and construction ware compared holistically.
Firstly, the amount of literature published on the digital twin
application in both industries over the years is shown inFig. 9.

Comparing the number of publications, the manufactur-
ing industry has been leading with more publications since
2012. The publication gap tends to widen rapidly over the
years (except 2022 where the data is still incomplete). The
bibliometric analysis also show that there were fewer studies
on digital twin applications around 2012. The rapid develop-
ment of other relevant fields, such as big data, the Internet of
Things (IoT), has boosted digital twin advances and research
on its industrial applications in recent years (Tao et al.,
2019b). Hence, in both industries, the volume of literature
on the digital twin application has shown rapid growth.
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Fig. 4 Word cloud of literature sources on digital twin in manufacturing. Source by authors

Secondly, a comparison of the publication sources of the
literature reveals that there are 61 and 34 publication sources
for studies relating to the digital twin use in manufactur-
ing and construction respectively. The sources of journals
on the digital twin utilisation cases in the manufacturing
project delivery process are more diverse and the research
areas aremorewidely distributed. Inmanufacturing, journals
in fields related to smart manufacturing, advanced manufac-
turing, robotics and computing are the main sources, while
in construction, the main sources of literature are journals
related to the fields of buildings, constructions, civil engi-
neering, sustainability and energy.

A comparison of the countries in which the literature
was published revealed that studies relating to the digital
twin deployment in manufacturing came from 33 different
countries, whereas the number of countries of publication in
terms of the construction sector is only 21. This suggests that

research on digital twin in manufacturing is more widely dis-
tributed around the world than in construction. Despite the
differences in the number of countries sourced, the similar-
ity between the two is that the developed countries are still
the main source of literature. Overall, the research about the
digital twin utilisation in construction project lifecycle lags
behind that of the manufacturing industry.

Digital twin applications in themanufacturing
sector

The search terms that are used for the application of digi-
tal twin in manufacturing are listed in Table 4. Moreover,
Fig. 10 shows the word cloud regarding the digital twin’s
applications in manufacturing.

As canbe seen inFig. 10, digital twin has beenused in vari-
ous domains such as computer science, smart manufacturing,
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Fig. 5 Word cloud of publication countries for digital twin in manufacturing. Source by authors

materials science, robotics, human–robot collaboration and
logistics in manufacturing. In these domains, digital twin
has been useful in product design, simulation, production
forecasting, fault diagnosis, decision support, predictive
maintenance, scheduling, monitoring, etc. In addition to the
preceding applications, through integration with technolo-
gies such as augmented reality, the Internet of Things, big
data as well as artificial intelligence and deep learning, etc.,
digital twin has many functions in manufacturing products.
Broadly, digital twin applications in manufacturing from
a product lifecycle perspective are described under seven
phases. These are concept generating, design, manufactur-
ing, transportation, sales, utilisation and after-sales service,
recycling and disposal.

Concept generating phase

Concept generating is the process that defines the design and
key features of a product based on customer requirements
and information about the product (Son et al., 2022). Digital
twins have been investigated for exploring and discover-
ing market needs guiding designers in developing functions
based on customer requirements and quick confirmation of
design solutions are areas. Ma et al. (2020) combined associ-
ation analysis and cluster mining with the digital twin, which
enabled designers to use the digital twin to better access mar-
ket needs and explore hidden design requirements.Moreover,
by combining big data, the digital twin was able to fully
explore customer needs and identify new areas to improve
customer satisfaction (Wang et al., 2021a, 2021b, 2021c).
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Fig. 6 Number of publications
about the digital twin usage in
construction. Source by authors

Fig. 7 Word cloud of literature sources on digital twin in construction. Source by authors

Cheng et al. (2020) applied a digital twin enhanced indus-
trial internet system that contained product lifecycle history
data to this phase to better assist designers in selecting better
conceptual design options. Moreover, with the help of digital
twin, it is possible to deepen the designer’s understanding of
the target customer’s needs. By integrating the feature recom-
mendation system into the digital twin, customer feedback
could be analysed to recommend new features for the target
product and guide designers to develop functions sensibly
(Tao et al., 2019a).

Design phase

Product design for manufacturing comprises three sub-
stages: product design specification, conceptual design and
detailed design, representing the process of gathering prod-
uct information and defining it precisely, finding solutions
that meet the design specification and determining the spec-
ification of components and materials according to the
manufacturing function (Son et al., 2022). The digital twin’s
utilisation in the product design phase is exemplified in rapid
design and customised production, virtual and remote test-
ing, as well as product design optimising. A study by Yan
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Fig. 8 Word cloud of publication countries for digital twin in construction. Source by authors

Fig. 9 Comparison of the number
of articles [Total number of
articles, Manufacturing (166);
Construction (61)]. Source by
authors

Table 4 Literature on digital twin applications in manufacturing. Source: by author

Search terms Outcome Screening

1st 2nd 3rd

‘Digital Twin’ AND ‘Manufacturing’ 1824 1117 158 197

‘Digital Twin’ AND ‘Production’ 1321 762 102

‘Digital Twin Application’ AND ‘Manufacturing’ 618 373 85
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Fig. 10 Word cloud of digital twin applications in manufacturing

et al. (2021) developed a new digital twin design platform
for furniture production, which shorten the design cycle. By
applying stored digital twin models of typical equipment,
Wu et al. (2021) were able to rapidly realise layout design,
equipment configuration and virtual machining of marine
pipeline production lines, enabling rapid production customi-
sation. Ultra-high fidelity digital prototypes enabled by the
digital twin platform have been used for digital verification,
replacing the traditional costly and inefficient physical ver-
ification, achieving rapid confirmation of design solutions
before physical manufacturing and facilitating rapid product
development (Huang et al., 2022). Similarly, Lu et al. (2021)

applied digital twin to the design process of automotive con-
stant velocity joint, replacing traditional physical testingwith
virtual testing of the product implemented through digital
twin to enhance the efficiency of tests during the design
process. In terms of remote testing capabilities, Leng et al.
(2021) have implemented remote semi-physical testing of
products in the design phase through a digital twin sys-
tem, significantly reducing the impact of Covid-19 pandemic
that prevented physical testing of products in the field. Wu
et al. (2022b) integratedmulti-disciplinary collaboration into
the digital design process through a digital twin platform,
providing real-time verification of problems caused by the
intersection of multiple disciplines, reducing design costs
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while promoting collaborative optimisation between disci-
plines in the product design phase.

Manufacturing phase

Manufacturing is the main phase in which digital twin is
applied, and it refers to the process of assembling, manufac-
turing or producing a product based on specifications defined
in the design phase (Son et al., 2022). During this phase, the
digital twin has been investigated for flexible scheduling and
production, process optimisation and production improving,
equipment maintenance and fault diagnosis, energy manage-
ment, human factors engineering optimisation, as well as
real-time data management and tracing. In terms of digital
twin implementation to assist production scheduling, intelli-
gent scheduling of workshops enabled by digital twin could
solve the problem of inconsistent resource allocation to phys-
ical production sites caused by information imbalance, and
real-time active workshop scheduling was achieved through
data provided by digital twin (Zhang et al., 2022). Nie et al.
(2021) enhanced the allocation of resources and resistance to
disruption in the production process through the integration
of physical and virtual shopfloor with digital twin service
systems, enabling a more efficient allocation of resources.
In addition, a digital twin-based mixed integer linear pro-
gramming (MILP) scheduling model has been developed,
realising flexible scheduling of production based on internal
and external temporary events (Tliba et al., 2022).

Digital twin can also be used to optimise the process and
improve the production of products. As one of the main
concerns of product production, quality improvement is an
important aspect of digital twin applications. Reisch et al.
(2022) were able to achieve real-time defect detection dur-
ing the machining of large metal parts through digital twin
and make quantitative assessments to improve the sensitivity
of defect detection thereby ensuringmachining quality. Also,
quality control methods driven by digital twin can be used
to accurately predict product quality, evaluate processes and
optimise process parameters related to product quality (Zhu
& Ji, 2022). In addition, improvements in the production are
also manifested in optimisation in the machining and assem-
bly processes. Themachining state during themanufacturing
process could be simulated by digital twin in real time and
enable timely correction and optimisation ofmachining solu-
tions to improve themachining process (Zhang&Zhu, 2019).
Yi et al. (2021) also introduced an intelligent assembly pro-
cess enabled by the digital twin, capable of being used for
assembly process planning, simulation and prediction. Addi-
tionally, the digital twin-driven assembly commissioning
method developed by Sun et al. (2020) enabled the assembly
process prediction and optimization, ensuring the high preci-
sion required for the assembly of multi-disciplinary coupled
products.

Maintenance during production is important for the pro-
duction process, which can ensure that sufficient production
resources are available during production to achieve the
desired productivity andquality of production (Celen&Djur-
djanovic, 2012). In production processes, the digital twin has
shown capabilities in equipment maintenance, fault predic-
tion, intervention and diagnosis. Guo et al. (2021) proposed
a digital twin-based shopfloor equipment life prediction and
preventive maintenance method to guide the maintenance
of relevant components of shopfloor production equipment.
Also, predicting possible anomalies during production could
be achieved with the digital twin, ensuring the stability
of the manufacturing process (Wang et al., 2021a, 2021b,
2021c). To quickly resolve faults in the event of future
breakdowns, digital twin-based factory system platform can
provide operators with tools for monitoring the production
process, making it possible to intervene in time in the event
of a production breakdown (Franceschi et al., 2022). In addi-
tion, to deal with faults efficiently, digital twin has been used
as fault diagnosis aids. Combined with deep migration learn-
ing, digital twin-assisted fault diagnosis methods allow the
extraction and exchange of simulated data for training from
the virtual to the physical space, improving fault prediction
accuracy and achieving efficient fault-assisted diagnosis of
production processes (Deebak & Al-Turjman, 2021).

Another major application in production processes is
energy management, a good energy management system
could effectively contribute to efficiently managing energy
in manufacturing processes (Wen et al., 2021). The energy
management systembased on digital twin is driven by operat-
ing conditions, parameters and real-time data on production
loads. With the integration of a hybrid Petri-net (DDHPN)
driven by data, the system can reflect the energy usage of
the production process in real-time for efficient energy man-
agement (Li et al., 2022). Besides, by combining the digital
twin with agent-based decision making, the movement of
the robots in the production process can be optimised in
real-time, thus enabling the energy consumption of the man-
ufacturing process to be reduced (Barenji et al., 2021).

Human–robot collaboration allows for the combination of
the high precision, speed and repeatability benefits of robots
with the flexibility and cognitive skills of workers, but chal-
lenges remain in how to efficiently implement human–robot
interaction in production processes (Villani et al., 2018). The
applicationof digital twin in human factors engineering could
effectively promote efficient human–machine collaboration.
Sun et al. (2022) produced a framework for human–robot
collaboration (HRC) commissioning driven by digital twin,
which was able to improve the cognitive ability and adapt-
ability of the robot units to the task, adaptively adjust the
robot motion path during HRC, and optimise the efficiency
of HRC. In addition, via the digital twin of flexible assem-
bly unit developed, the simulation model has been used for
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live control, dynamic task allocation as well as sequencing
between man and machine, which achieved more efficient
collaborative human–machine assembly (Bilberg & Malik,
2019).

The tracing of information andmanaging data in real-time
is a matter of concern during the production of a product.
Especially in the production of complex products, owing to
the high degree of unpredictability, complexity and frequent
rework and repair, the importance of data management and
traceability of process information in production is evenmore
prominent (Zhuang et al., 2021). The intelligentmachine dig-
ital twin tool developedbyWanget al., (2021a, 2021b, 2021c)
has allowed isolated physicalmachines to be connected to the
digital system and to monitor and manage machine operat-
ing conditions, production times and machine efficiency in
real-time.Moreover, the digital twin has been introduced into
the production process, achieving synchronous mapping of
physical and virtual space in real-time, therefore achieving
the goal of production site monitoring and communication,
as well as inspection of the geometric features of the product
in a timely manner (Zheng et al., 2021a, 2021b).

Transportation phase

After manufacturing, the logistics process in which the
manufacturer transports the product to the selling point in
accordance with purchase order is called transportation (Son
et al., 2022). In the era of Industry 4.0, more and more new
technologies are being used to change the competitive land-
scape of logistics and transport in themanufacturing industry
(Tang &Veelenturf, 2019). The digital twin has been applied
in the manufacturing transportation in areas such as real-
time logistics management and tracking, storage or transport
planning optimisation and controlling the risk of logistics
processes.

The digital twin can be combined with cloud computing
systems to capture the dynamics of the physical world in IoT-
driven production-synchronous logistics systems, thereby
enabling monitoring and controlling of logistics systems in
real-time (Pan et al., 2021). In addition, integrating the digi-
tal twin platformwith a multi-dimensional immersive virtual
reality system and an IoT system allowed for the visualisa-
tion of cargo loading, while data captured by sensors can be
used to optimise loading and transport planning, and these
functions (Wong et al., 2021). Furthermore, the precise posi-
tioning and behavioural detection realised by the digital twin
can enhance the safety of people working in the logistics pro-
cess and the perception of risks, thus controlling the risks in
the logistics (Zhao et al., 2021).

Sales phase

Sales is the process of selling products to companies or
individuals (Son et al., 2022). In the product sales process,
Sun et al. (2021) have successfully implemented a digi-
tal twin-based virtual shop by combining IoT and artificial
intelligence (AI) analytics. It provided real-time feedback to
users on product details and the development of intelligent
soft robotic manipulators to automatically recognise grabbed
items, thus providing a better remote interactive shopping
experience for customers during the product sales process.

Utilisation and after-sales service phase

During the utilisation and after-sales service process, the
customer operates the product according to the product’s
manual, meanwhile, the manufacturer provides maintenance
and service for the product during the customer’s use phase
(Son et al., 2022). Improving product lifecycle maintainabil-
ity is becoming increasingly important for manufacturers to
maintain their competitiveness in the current market (Guo
et al., 2020). During this phase, predictive maintenance and
fault detection, product operation optimisation and health
status monitoring can all be achieved by the digital twin. By
combining digital twin with deep learning, product operat-
ing conditions can be simulated from digital twin models for
model training, thereby enabling intelligent predictive main-
tenance of productswith limitedmeasurement data, aswell as
intelligent fault diagnosis of products (Xia et al., 2021;Xiong
et al., 2021). A study by Li et al. (2021) applied digital twin
in studying the operating conditions of gasoline engines. The
digital twin simulation and optimisation platform combined
with algorithms could identify the best operating condi-
tions for engines, reduce product energy consumption and
optimise product operation. In addition, detecting health con-
ditions and predicting the remaining lifespan of products in
use are also possible with the digital twin. For example, a
deep migration learning-based digital twin model driven by
data proposed byMeraghni et al. (2021) can be used to update
the digital twin model of products, making cell product life
prediction and health management a reality. In the area of
renewable energy, Saini et al. (2022) developed a digital twin
of a real time microgrid (MG), installed at the commercial
building, that can be used to evaluate the electrical, finan-
cial, and environmental performance of the MG. Li et al.
(2022) developed a digital twin driven information archi-
tecture of sustainability assessment oriented for dynamic
evolution under the whole life cycle based on the classic
digital twin mapping system. The sustainability assessment
method segment of the architecture includes indicator system
building, indicator value determination, indicator importance
degree determination and intelligent manufacturing project
assessing (Li et al., 2022).
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Recycling and disposal phase

In the final phase of the manufacturing product lifecycle,
recycle and disposal refers to the disposal or reuse of a prod-
uct after it has been used by the customers (Son et al., 2022).
Manufacturers are currently facing significant challenges
in the disposal of used products, therefore it is important
to explore ways to reuse, remanufacture and recycle prod-
ucts or their components during the product lifecycle (Kuik
& Diong, 2019). In this phase, combined with deep learn-
ing, the utilisation of digital twin can provide manufacturers
with information to make inform decisions on whether to
remanufacture, upgrade or repair products (Zacharaki et al.,
2021). The virtual model of the digital twin can also help
for analysing components that should be scrapped and to
understand the disassembly process of scrapped components
(Cheng et al., 2020). In addition, digital twin can be used
to predict market demand in the remanufacturing process,
reduce uncertainty and support remanufacturing operations
across the product lifecycle (Wang et al., 2020).

The barriers to implementing digital twin
in manufacturing

In this section, the barriers to the adoption of digital twin in
manufacturing will be examined. Table 5 provides the search
terms used in identifying the literature related to impediments
to digital twin deployment in manufacturing.

Using the search terms of Table 5, the barriers identified
have been captured in the Word cloud of Fig. 11.

On conducting a detailed exploration, the literature result-
ing from Fig. 11, barriers to the adoption of digital twin will
be discussed in the ensuing paragraphs.

Firstly, visibly, it appears from Fig. 11, that proper
design is still a challenge in the digital twin application in
manufacturing, and difficulties still exist with synchronous
simulation, computer modelling, data fusion and transmis-
sion.

Secondly, the lack of a uniform definition and systematic
understanding of the digital twin concept has hindered its
application in manufacturing. Although studies about digi-
tal twin is increasing and definitions are converging, there is
still no complete agreement on many of the characteristics of
the digital twin (Liu et al., 2022a, 2022b, 2022c, 2022d). The
comprehension of the concept, background and development
methodology of the digital twin is important to its applica-
tion, but systematic understanding of the digital twin is still
lacking, which poses a challenge to the widespread use of
this technology in manufacturing (Kantaros et al., 2022).

Thirdly, the lack of standardisation impedes the digital
twin’s deployment in manufacturing. Interoperability and
uniformity between technology modules are still lacking.
Difficulties in digital twin scalability and interoperability,

data access and exchange between modules make it chal-
lenging to combine modules into larger systems, hindering
its integrated application throughout the product lifecy-
cle (Qamsane et al., 2022). In the manufacturing product
delivery, digital twin models may be created by different
stakeholders in different phases of product lifecycle, and
different tools or development standards may be adopted,
which also creates difficulties in its application and integra-
tion (Zheng et al., 2021a, 2021b).

Fourthly, due to the complexity of physical systems, there
are still difficulties in achieving accurate simulations and pre-
cise real-time synchronisation between physical and virtual
entities. For accurate and reliable simulation of the digital
twinmodel,many factors should be given consideration. This
is a challenge for the hardware capabilities of the computers
in manufacturing plants, where in some plants the computers
are still not efficient enough to achieve accurate and fast sim-
ulations (Chabanet et al., 2022; Gunasegaram et al., 2021).
Also, the complexity, variability, uncertainty and ambigu-
ity of the physical environment, combined with the constant
generation of physical data, makes it harder to interact in
real-time with the physical and virtual environments (Pires
et al., 2019).

Finally, there is the obstacle posed by the lack of trust
and consensus between stakeholders in the product deliv-
ery process and the poor interaction of information. Due
to considerations of sensitivity and security of core data or
important information between the various stakeholders, and
the fact that the technology platform cannot be fully trusted
by the stakeholders, making information interaction insuf-
ficient (Tao et al., 2022). Together with the fact that most
organisations currently have their own systems and ways of
processing information, with very little information sharing
and interaction, thus making it more difficult to apply the
digital twin to the manufacturing process (Pires et al., 2019).

Digital twin applications in the construction
industry

Table 6 shows the literature search terms and outcomes
for digital twins’ applications in the construction industry.
Figure 12 is the word cloud exported from VOSviewer about
the digital twin applications in construction.

It is important to note that search result for digital appli-
cations in construction is 72, slightly more than 61 for
the literature on digital twin in construction as indicated
in Table 3. This is due to the addition word “Applica-
tion” included in the search term ‘Digital Twin Application’
AND ‘Construction’ that brought about the extra number
of articles. Also, on using the search term, ‘Digital Twin
Application’ AND ‘Project Delivery’, the output was zero as
indicated in the last row of Table 6.
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Table 5 Literature on the barriers to the digital twin application in manufacturing. Source by authors

Search terms Outcome Screening

1st 2nd 3rd

‘Digital Twin’ AND ‘Manufacturing’ AND ‘Barrier’ 27 21 7 61

‘Digital Twin’ AND ‘Production’ AND ‘Barrier’ 17 9 4

‘Digital Twin’ AND ‘Manufacturing’ AND ‘Challenges’ 443 256 44

‘Digital Twin’ AND ‘Production’ AND ‘Challenges’ 311 177 30

Fig. 11 Word cloud of challenges to digital twin’s application in manufacturing. Source by authors
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Table 6 Literature on digital twin applications in construction. Source by authors

Search terms Outcome Screening

1st 2nd 3rd

‘Digital Twin’ AND ‘Construction’ 502 350 40 72

‘Digital Twin’ AND ‘Building’ 1078 710 51

‘Digital Twin Application’ AND ‘Construction’ 174 117 26

‘Digital Twin Application’ AND ‘Project Delivery’ 0 0 0

Fig. 12 Word cloud of digital twin applications in construction. Source by authors
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On generating the Word cloud for the digital twin appli-
cations in construction, the result is presented in Fig. 12.

Figure 12 shows that, in the construction industry, with
the maturation of technologies such as BIM, augmented
reality, geographic information systems (GIS) and big data,
digital twin applications are beginning to emerge, partic-
ularly in the construction of buildings and infrastructure
projects. The most prominent research clusters of digital
twins’ applications include asset and facility management,
construction safety management, hazard identification, auto-
mated construction, sustainable development, and structural
health monitoring. To develop a detailed and specific under-
standing of how digital twin could be applied in the lifecycle
of construction projects, the information gathered from the
systematic review is discussed under a four-part project
delivery lifecycle model comprising design and engineering,
construction, operation andmaintenance, and demolition and
recovery was adopted.

Design and engineering phase

The design and engineering is the phase to organise and
design the project plan, sign various documents with project
stakeholders, carry out pre-construction surveys and audits,
and obtaining approvals (Xu et al., 2014). Within this pro-
cess, information sharing and design solution optimisation
could be achieved by the use of digital twin. Kaewunruen and
Lian (2019) proposed a six-dimensional Building Informa-
tion Model (BIM)-based digital twin that could fully utilise
information from the construction site to improve the flow of
information for project planning and design. By applying it
to a railway construction project, it was shown that the digi-
tal twin can simplify technical communication by improving
information sharing on the construction project, thus achiev-
ing improved project design quality. Zhao et al. (2022) used
BIM-based digital twin to simulate and evaluate ventilation
options for public sanitation constructions, demonstrating the
ability of digital twin to optimise the building environmental
performance during design. Also, the integration of the dig-
ital twin with multi-criteria decision making (MCDM) and
geographic information systems (GIS) enabled optimisation
of complex road planning and construction the during road
construction design (Jiang et al., 2022). Moreover, by sim-
ulating the UK’s King’s Cross station, Kaewunruen and Xu
(2018) implemented a BIM-based digital twin in planning,
design and operating environmentally efficient construction
projects. Their study on the application of BIM in railway
station construction projects proves that BIM-based digital
twin can not only help in the design of construction projects,
but can also take full account of economic and environmental
benefits.

Construction phase

The construction phase iswhen the building project is formed
and plays a prominent role in the overall delivery of the build-
ing project (Opoku et al., 2021). In this phase, the digital twin
was applied in the areas of real-time constructionmonitoring,
project information sharing and tracing, safety evaluation
and risk control, construction quality and process optimi-
sation. Han et al. (2022) developed the BIM-IoT platform as
a prototype for implementing the digital twin, providing data
monitoring during road construction, enabling real-time con-
struction inspection andqualitymanagement. In combination
with the IoT to update building information models in real-
time, the joint use of digital twin and blockchain technology
can significantly improve information sharing and traceabil-
ity on construction projects (Lee et al., 2021).With reference
to Wu et al. (2022a), by combining digital twin with deep
learning and mixed reality, it was able to achieve real-time
visual warning, making self-safety assessment of construc-
tion workers during the construction process a reality so that
the risks during project construction can be controlled. These
developments and applications are supported by the integra-
tion of the digital twin with other technologies, allowing it to
provide accurate information on the project status during the
construction process. Moreover, based on the large amount
of accurate information provided, the digital twin could help
to improve project quality and optimise the construction
process. A study by Tran et al. (2021) demonstrated that
geometric errors during construction can be assessed in an
efficient way to improve construction quality by comparing
the 3D as-built digital twin based on the construction process
with the 3D design model. Additionally, the digital twin was
able to simulate and calculate the construction situation and
material situation on site in the virtual model, implement-
ing intelligent planning for the deployment of materials and
site logistics, thereby enabling a better construction process
(Greif et al., 2020; Liu et al., 2022c).

Operation andmaintenance phase

The main task during the operation and maintenance of con-
struction projects involves the development and implemen-
tation of a proper maintenance programme while operating
the building, which is an aspect of good performance and
a comfortable environment for the users (Xu et al., 2014).
During this phase, the completed buildings are generally
not under the control of the builders, thus makes managing
and accessing building data more challenging (Opoku et al.,
2021). Nevertheless, the use of the digital twin has brought
relief to the problem, as it could be useful in the areas of con-
structionmaintenance and repair, energymanagement, safety
management, and facilities and asset management. Apply-
ing digital twin to the maintaining and repairing of buildings
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could provide opportunities for the building’s maintenance
staff to enable manual intervention and predictive mainte-
nance before damage or failure occurs. For example, the
digital twin can be integrated with cloud computing and deep
learning to build a digital twin framework for building health
inspection, enabling accurate detection of building damage
and human intervention for efficient real-time monitoring
andproactivemaintenance (Danget al., 2022).Besides,many
researchers have explored opportunities to apply digital twins
to building energy management. Zhao et al. (2021) used
3D laser scanning technology to efficiently create digital
twin models of buildings and evaluate retrofitting options for
existing buildings in terms of improving energy use through
simulation. Their case study showed that this method was
effective in reducing building energy costs, bringing oppor-
tunities for more efficient energy use in building operations
and maintenance. Peng et al. (2020) have applied the digital
twin to the operation of a hospital to continuously monitor
the energy consumption of the hospital building in terms of
water and electricity, and to count the absolute amount of
energy consumed by different categories, thus demonstrat-
ing the important role played by digital twin in the energy
management of hospitals. Moreover, they have also proven
the value of digital twin applications in safety management.
By interfacing the digital twin platform with the hospital’s
video surveillance platform, the system was able to call up
surveillance video in real-time, and in the event of a secu-
rity situation, the system was able to quickly locate and
respond to it, enabling intelligent security management in
the building. In addition, the study conducted by Lu et al.
(2020a) provided a digital twin system for asset monitoring,
based on an extended industrial foundation classes (IFC) data
integration approach, achieving the automated and efficient
management and monitoring of building assets in daily oper-
ations and maintenance management. In general, it appears
that the powerful structural and visual presentation enabled
by the digital twin makes a significant difference in these
applications during the operation and maintenance phase of
a construction project (Opoku et al., 2021). Nie et al. (2021)
developed a digital twin application that uses real-time and
historical data of selected features of historic buildings to
predict energy consumption, and control energy-consuming
equipment autonomously to reach the balance of energy effi-
ciency, building conservation, and human comfort. Darwish
and Hassanien (2022) developed a BIM model powered by
Digital Twins (DT) that can be used for monitoring and
inferring the behavior, deterioration of heritage structures,
performance, collecting and classifying varied data that can
co-exist in the model of an asset for artifact preservation.
Falcone et al. (2021) developed a digital twin application
that can be used for the automated analysis of the state of
degradation of a cultural heritage artefact. Jouan and Hal-
lot (2019) developed a digital twin application that captures

analysis and simulation data using onsite sensors that can
be used in predicting threats to the site integrity and corre-
sponding preventive solution. The digital twin can support
site managers in the preventive conservation of their assets.
In the area of environmental sustainability, Fokaides et al.
(2022) developed a digital twin that can be used in facilitat-
ing the to a smart, sustainable, resilient and carbon neutral
built environment. Ospina-Bohórquez et al. (2022) created a
digital twin for monitoring the construction of a wind farm.

Demolition and recovery phase

The obsolete and unusable buildings need to be demolished
and replaced by new buildings by the end of the construction
project’s lifecycle (Ginga et al., 2020). Ensuring activities in
the final phase of a building project’s lifecycle are sustain-
able is a challenge. This is because a large amount of waste
with environmental impacts is often generated, and this phase
is often overlooked by researchers (Ginga et al., 2020; Liu
et al., 2021). Some studies have investigated the use of digi-
tal twin in construction demolition and recovery phase. Kang
et al. (2022) have developed aBIMand IoT-based digital twin
framework to support information collection and analysis for
activities in the demolition and recovery phases of buildings.
The framework theyproposedwill be capable of assessing the
volume of waste, planning the building demolition process
and waste disposal routes, thus making it easier to choose an
appropriate waste management strategy for building demoli-
tion. Zust et al. (2021) suggested an approach to deploy and
process materials generated during excavation and demoli-
tion of buildings with digital twin, realising the recycling
of demolition waste and reducing the demand for construc-
tion raw materials. Besides, BIM-based digital twin has its
application in building renovation. The use of BIM-based
building toolkits for the renovation of existing residences
could enhance the flow of information, achieving the perfor-
mance and quality improvement of buildings (Daniotti et al.,
2022).

Barriers to implementing digital twin
in construction

InTable 7, the search terms andoutcomes on the impediments
to the adoption of the digital twin in construction projects
lifecycle are listed. These are then visualised in a word cloud
map in Fig. 13.

According to Fig. 13, the application of digital twin
is faces a number of challenges including integration of
technologies, standardisation, model simulation, real-time
interoperability, etc. The difficulties of data and technology
integration are a barrier to the deployment of digital twin.
In the semi-structured interviews conducted by Broo and
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Table 7 Literature on the barriers to the digital twin application in construction

Search terms Outcome Screening

1st 2nd 3rd

‘Digital Twin’ AND ‘Construction’ AND ‘Barrier’ 12 11 3 26

‘Digital Twin’ AND ‘Building’ AND ‘Barrier’ 22 13 2

‘Digital Twin’ AND ‘Construction’ AND ‘Challenges’ 129 89 16

‘Digital Twin’ AND ‘Building’ AND ‘Challenges’ 251 159 18

Fig. 13 Word cloud of obstacles to digital twin’s application in construction

Schooling (2021) with executives from the UK infrastruc-
ture industry, it was mentioned that in cases where different
stakeholders are using different software or different versions
of the same software, the lack of common data standards and
interoperability can make it very difficult to share project
data and integrate technologies, therefore posing huge chal-
lenges to applying digital twin. Moreover, data security is

a concern in the current delivery of construction projects.
Data ownership remains ambiguous, and issues related to
intellectual property rights associated with the digital twin
remain. Especially in a web-based environment, with con-
cerns about intellectual property and legal issues creating
difficulties in the digital twin adoption (Madni et al., 2019;
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Shahzad et al., 2022). Also, the deployment of technolo-
gies and facilities related to the digital twin is still a major
issue in construction. Many facilities associated with digital
twin, such as sensors, RFID (radio frequency identification),
cyber-physical systems orWiFi networks, have yet been fully
adopted in construction sites (Hoeft & Trask, 2022). More-
over, the availability and technical reliability of the facilities
associatedwith the deployment of digital twin in the develop-
ment of the building projects iswanting (Ammar et al., 2022).
All of these factors have combined to make the digital twin
implementation difficult.

Furthermore, organisational challenges such as the ambi-
guity in terms of budget of digital twin in construction and
resistance to change are still of concern. The construction
sector is still unclear about the cost of software and hardware
required to deploy the digital twin in project development.
The return on investment and impact on the cash flow pro-
file of digital twin application has not been demonstrated on
many projects. Also, the amount of training required for the
technical expertise required to apply digital twin and the addi-
tional costs associatedwith training is still uncertain (Ammar
et al., 2022). Cost uncertainty is also a major concern for the
digital twin application in construction. The resistance of
organisations or individuals to change is another concern for
hindering the digital twin’s adoption. Given the fragmented
and uncertain nature of the construction industry, organisa-
tions or decision makers in the construction industry do not
usually consider adopting new technologies or platforms for
reasons of commercial and financial risk avoidance (Hoeft &
Trask, 2022). Sacks et al. (2020) also noted that traditional
business practices in the construction industry can resist the
adoption of technological innovations. Existing approaches
to construction project management and practices, particu-
larly the workforce already skilled in implementing these
practices, are difficult to change, which poses a consider-
able barrier to the digital twin deployment when developing
construction projects.

Finally, the fickle and unique nature of the construction
industry also impede the use of digital twin, due to the fact
that it is almost impossible to identify two identical construc-
tion projects, each one is unique (Madubuike et al., 2022).
The uniqueness and complexity of projects, combined with
the fact that there are no agreed standards for the digital twin
utilisation in construction, therefore make the digital twin
development and application even more difficult.

Discussions

Comparison of digital twin inmanufacturing
and construction

The implementation of digital twin in product and project
development in both the manufacturing and construc-
tion industries has attracted considerable attention from
researchers. To assess the digital twin’s applications and
implications in product and project development, six differ-
ent aspects or themes: the nature of products/project/service,
the industry context, key technologies, applications and func-
tions, benefits and barriers will be used as a lens upon which
to compare the two industries.

The nature of product/project/service: In the manufac-
turing industry, products are typically mass-produced goods
that are created through standardized processes. These prod-
ucts can range from consumer electronics, automobiles, and
appliances to furniture, clothing, and packaged food items.

On the other hand, the construction industry is focused on
the creation of infrastructure and buildings. Instead of pro-
ducing standardized products, construction projects involve
the development of unique structures tailored to specific
requirements. Peharps, partly because of the standardised
nature of products, digital twins is easily applied in themanu-
facturing than in the construction sector. This aligns with the
viewbyAbanda et al. (2017)where, they argued thatBIMcan
easily be applied on modular construction as it is standard-
ised compared to traditional construction. However, due to
the unique nature of projects and the challenge to understand
and make informed decisions about their performance, the
need of implementing digital twin in construction is urgent
and and should be a par with the manufacturing sector to say
the least. The issue of performance draws in other concepts
such as an intelligent or smart project or building, which
opens up another discussion about its relationship between
BIM, digital twins and smart buildings. It is important to note
that this continuum is not strictly linear, and there can be over-
laps and interactions between these concepts. For example,
a BIM model can serve as the basis for developing a Digital
Twin, and a Digital Twin can inform ongoing updates and
modifications to the BIM model. Ultimately, the goal is to
leverage these technologies and approaches to improve con-
struction processes, building performance, and operational
efficiency throughout the lifecycle of a building.

Industry context: Inmanufacturing, the advent of the new
paradigm of Industry 4.0, has led to an increase in intercon-
nection and computerisation of products (Lu, 2017). Manu-
facturing has evolved to a statewhere it is feasible to combine
intelligent objects and cyber-physical systems. The novel
technologies that allow the development of digital copies in a
digital environment, enabling real-time communication and
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making the physical and virtual worlds exchanging a real-
ity (Cimino et al., 2019). The digital twin performs a key
role in the context of Industry 4.0 and Smart Manufacturing,
attracting significant interest from researchers and manufac-
turingpractitioners (Luet al., 2020b).Thedifferencebetween
the industry context in the manufacturing and the construc-
tion industry is that the latter has long been regarded as a
sector with a slow pace of innovation, low levels of digitalisa-
tion and low efficiency in project development (Leviäkangas
et al., 2017). Despite the slow adaptation to digitisation and
informatisation, digital tools have improved task realisation,
communication and information interaction in construction,
leading to the development ofmany construction-related con-
cepts such as smart buildings and smart cities (Ozturk, 2021).
The great potential has been shown by digital twin in enhanc-
ing the construction project delivery (Al-Sehrawy & Kumar,
2021).

Key technologies: With regard to key technologies, the
evolution of various kinds of new-generation technologies
has made possible that the physical world and the virtual
world can be gradually converged. The digital twin has
greatly facilitated the digitalisation process in various indus-
tries by combining these technologies to digitise physical
entities as a whole (Qi et al., 2021). The application of
digital twin is closely related to the integration of various
technologies. Technologies related to the digital twin, includ-
ing the Internet of Things (IoT), big data, deep learning
(DL) and blockchain, are all being researched and applied to
someextent in themanufacturing and construction industries.
However, the difference between the two is that, in construc-
tion projects, the BIM-based digital twin is themost common
form of its application. As far as the digital twin is currently
being applied, digital twin models are used as synonyms for
BIM models in construction (Opoku et al., 2021), which is
not accurate as both are not synonymous. Furthermore, in
this study, examples of the use of digital twin in conjunction
with Geographic Information Systems (GIS) was explored
in the construction industry, while no relevant applications
were found in the manufacturing industry. For manufactur-
ing, in the transformation process to smart manufacturing,
in addition to several technologies that are common in both
industries, there is a preference for applications related to
cyber-physical integration, such as finite element simulation,
virtual reality and CPS (Qi & Tao, 2018).

An important aspect often demanded by practitioners are
the various digital twin software systems. Unfortunately,
upon browsing the literature identified through the system-
atic review, the different digital twin software systems were
not uncovered. As a result, a manual search through leading
vendors’ or manufacturers’ website led to the identification
of the different digital twin software systems. The digital twin
software for manufacturing will be discussed in the ensuing
paragraph.

• Siemens Digital Twin: Siemens offers a comprehensive
suite of digital twin solutions, including Simcenter for sim-
ulation and testing, Mindsphere for IoT connectivity and
analytics, and Tecnomatix for digital manufacturing and
plant simulation.

• Dassault Systèmes 3DEXPERIENCE: Dassault Systèmes
provides a platform for digital twin development and
management. It includes applications such as DELMIA
for manufacturing operations management, SIMULIA for
simulation and analysis, and CATIA for product design.

• PTC ThingWorx: ThingWorx is an Industrial IoT platform
that enables the creation and management of digital twins.
It provides tools for connecting assets, collecting and ana-
lyzing data, and creating virtual representations of physical
products and processes.

• AVEVA Asset Performance Management: AVEVA offers
a digital twin solution focused on asset performance man-
agement. It combines real-time data, predictive analytics,
and simulation capabilities to optimize asset performance,
maintenance, and reliability.

• Ansys Twin Builder: Ansys Twin Builder is a simulation-
based digital twin platform. It allows manufacturers to
create and simulate virtual models of products and pro-
cesses, enabling optimization, predictivemaintenance, and
performance analysis.

• GE Digital PlantSight: GE Digital’s PlantSight is a digital
twin solution for the manufacturing industry. It integrates
3D models, engineering data, and real-time information
to provide a holistic view of assets, improve operational
efficiency, and enable data-driven decision-making.

• AspenTech Asset Performance Management: AspenTech
offers a suite of solutions for asset performance man-
agement, including asset optimization, predictive main-
tenance, and process modeling. It enables manufacturers
to create digital twins to monitor and optimize equipment
and processes.

• Honeywell Forge Asset Performance Management: Hon-
eywell Forge is an Industrial IoT platform that includes
asset performance management capabilities. It allows
manufacturers to create digital twins of assets, monitor
performance, and leverage predictive analytics for main-
tenance and optimization.

• Microsoft Azure Digital Twins: Microsoft Azure provides
a cloud-based platform for building and managing digital
twins. It offers tools and services for modeling and visu-
alizing assets, analyzing data, and integrating with other
Azure services.

While digital twin software is not as prevalent in the con-
struction sector as it is in manufacturing, there are still some
software platforms and solutions available for implementing
digital twins in construction. Here are a few examples:
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• Autodesk Tandem: Autodesk Tandem aims to leverage
Building InformationModeling (BIM) data and combine it
with real-time project data to create a comprehensive dig-
ital representation of a built asset. This digital twin would
allow construction teams, facilitymanagers, and owners to
visualize, analyze, and interact with the asset throughout
its entire lifecycle.

• Bentley iTwin: Bentley iTwin is a comprehensive platform
that combines reality modeling, BIM, and asset perfor-
mance modeling. It enables the creation and management
of digital twins for infrastructure projects, supporting
design, construction, and ongoing operations.

• Hexagon HxDR: Hexagon HxDR is a cloud-based real-
ity capture and digital twin solution for construction
and infrastructure projects. It integrates high-resolution
imagery, laser scanning, and other data sources to create
accurate and detailed digital twins.

• Siemens COMOS: Siemens COMOS is a digital twin plat-
form that caters to various industries, including construc-
tion. It provides tools for managing data and information
throughout the entire lifecycle of a project, from design
and engineering to construction and maintenance.

• IBM Maximo for Construction: IBM Maximo for Con-
struction is an asset management software that can be
extended to incorporate digital twin capabilities. It enables
construction companies to monitor and manage assets,
track maintenance activities, and optimize performance.

• Unity Reflect: Unity Reflect is a real-time 3D visualiza-
tion and collaboration platform that supports the creation
of digital twins for construction projects. It enables stake-
holders to explore and interact with BIM models, improv-
ing communication and decision-making.

• SmartReality: SmartReality is a mobile application that
combines augmented reality (AR) with digital twin tech-
nology. It allows construction teams to overlay 3D BIM
models onto real-world construction sites, providing an
immersive visualization experience.

Application and the main functions: The manufactur-
ing and construction industries have different product and
project lifecycle models and there is a difference in the
extent to which digital twin is applied. Typically, man-
ufacturing products have a more complex lifecycle than
construction. In construction, themain functions and areas of
application of the digital twin include building information
visualisation and traceability, facilities management, energy
simulation andmanagement, real-timemonitoring, structural
and building inspection, construction process optimisation
and construction risk management. The operation and main-
tenance (O&M) phase of the construction project lifecycle is
where the digital twin is mostly applied. For manufacturing,
the digital twin has even wider applications than manufac-
turing, including not only applications in information and

data management, flexible scheduling, energy management,
real-time monitoring, facilities maintenance and fault diag-
nosis, process optimisation and risk control, but also in rapid
design, remote virtual verification, requirements exploration
and function development, and human factors engineering.
Unlike construction, the design and manufacturing phases
of a product are what digital twin in manufacturing product
lifecycle is currently more focused on. However, a similar
situation in manufacturing and construction is that studies
on the use of digital twin in the final stage of the lifecycle are
lacking compared to other stages.

Benefits of digital twin application: The benefits of dig-
ital twin applications are quite similar in both manufacturing
and construction industries, delivery time shortening and effi-
ciency gains, project risk reduction, quality assurance, and
management assistance of facilities brought about by digital
twin have positively affected project delivery. However, the
difference is that in the manufacturing industry, the improve-
ments in economic benefits brought about by digital twin
applications are more evident, specifically in terms of lower
production costs, reduced energy consumption, etc. (Zhou
et al., 2020). In construction, although digital twin applica-
tions can lead to increased energy efficiency, whether they
are effective in reducing construction costs is still to be inves-
tigated. In this study, the use of the digital twin contributed
to helping manufacturing sector or manufacturers to explore
new business opportunities.

Lessons learned

The comparison shows that the construction industry is still
in its infancy when it comes to implementing digital twin
in project delivery and still lags behind the manufacturing
industry. The construction industry needs to learn lessons
from the current digital twin use in manufacturing to drive
its own better application.

Digital twin technologies: The construction sector needs
to strengthen the deployment of digital twin-related tech-
nologies. Digital twin-related technologies are still under-
deployed in construction compared to manufacturing, for
example, RFID or wireless networks, which are common
in the manufacturing industry, are still rarely deployed in
the delivery of construction projects (Hoeft & Trask, 2022).
Therefore, the construction industry should follow the lead
of the manufacturing industry in the deployment of techno-
logical facilities, complementing the relevant hardware to
provide the conditions for a wider digital twin adoption.

Definition and standards for digital twin: Establishing
unified and generally accepted definition of digital twin and
its development standards is imperative. The lack of a com-
mon definition or development standard for the digital twin
is currently a significant barrier to its adoption in both manu-
facturing and construction. In different disciplines, the digital
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twins’ areas of focus are different (Kritzinger et al., 2018).
Therefore, accelerating identification of a common defini-
tion can help drive further research into applications related
to the digital twin and make progress towards integrated
multidisciplinary applications. Furthermore, the current level
of integration of digital twin with related technologies in
construction is still insufficient compared to manufacturing.
Facilitating the establishment of a unified standard for digital
twin development and integration could enhance the integra-
tion with related technologies and their wider application.

Digital twin application for full project lifecycle: The
implementation of digital twin throughout the whole life-
cycle of a project should be given attention. Even though
the digital twin provides many benefits for product develop-
ment in manufacturing and its application is more mature
than in the construction industry, research varies consid-
erably according to different phases of product or project
lifecycle. Most application cases were focused on a single or
specific few phases and did not form an integrated appli-
cation for the whole lifecycle. In construction, the major
emphasis in digital twin usage is currently on the operations
and maintenance phase of construction projects. Hence, in
construction projects, paying attention to the digital twin’s
integrated application across the full lifecycle would help to
fill the gaps and bring wider benefits to project delivery.

Data protection and sharing: To promote better digital
twin adoption, the construction industry needs to improve
its intellectual property and data protection regulations. As
industrial big data becomes more widespread, the challenge
with information interaction and sharing between project
stakeholders due to information security concerns has slowed
down the pace of digital twin adoption. This is even more
evident in the manufacturing sector where industrial inter-
net platforms are the main method of collaboration (Tao
et al., 2022). The construction industry should learn from it,
strengthen privacy protection and data security, improve pro-
visions for information ownership and data protection, and
create conditions for better information interaction between
stakeholders to promote the digital twin adoption.

Openness to change: Last but not least, the construction
industry needs to embrace change. Given the nature of the
fragmentation and uniqueness of the construction industry,
the adoption of new technologies inevitably brings business
risks to construction project development, so many construc-
tion industry practitioners are conservative and reluctant to
try out new technologies in the project development pro-
cess (Hoeft & Trask, 2022). Nevertheless, the digital twin
has demonstrated in manufacturing that it can bring many
benefits to project development, and its potential for the con-
struction sector is also becoming apparent. The construction
industry should therefore be open to the adoption of new

technologieswhile considering the risks, and itwould be ben-
eficial to actively explore the use of digital twin and embrace
new opportunities in project development.

Conclusions

The aim of the study was to review both the application
of digital twins in manufacturing and construction, and to
draw out lessons learned from the digital twin applications.
Through a systematic literature review and bibliometric anal-
ysis, this paper first reviewed the current state of digital twin
for manufacturing and construction, providing an overview
of research landscape in these two industries since 2012, the
year in which digital twin started gaining popularity. The
study investigated the application of digital twins and the
barriers in the product and project lifecycles for the manu-
facturing and construction industries respectively. Following
this, a comparative analysis of digital twin applications,
barriers and benefits in the two industries was undertaken.
However, the overall level of digitalisation is still low in con-
struction, and the digital twin deployment still lags behind
the manufacturing industry. From this comparative analysis,
lessons were drawn under five categories that include digi-
tal twin technologies, digital twin definition and standards,
digital twin application for full product and project lifecycle,
data protection and sharing and openness to change. How-
ever, this study has some limitations. The records for the
study were only collected from a single source, i.e., the Web
of Science, rather than from several databases simultane-
ously. Coupled with the limited scope of this study, only a
few of the most relevant keywords and their synonyms were
selected for the literature search, thus possibly resulting in
an under-complete collection of literature, whichmay conse-
quently make the overview and collation of the digital twin’s
application across the project lifecycle less comprehensive.

Secondly, the subjectivity of judgement when reviewing
the articles may influence the accuracy of the conclusions.
The process of summarising findings involves concluding
and categorising the scattered applications of the digital twin
in a variety of areas of project (product) lifecycle. Thirdly,
the phases considered in the lifecycles were different, e.g.,
manufacturing and construction in the manufacturing and
construction sectors are different terms, although their mean-
ings are largely the same with regards to their respective
sectors. However, the scope of their boundries may be dif-
ferent, especially given the authors chosed 7 and 4 phases
for the manufacturing and construction sectors respectively.
Given the prelimary nature of this study and the fact that the
goal was to provide a high-level overview, the authors chose
to focus on articles that could fit with the different phases as
difined in the different literature. As part of future studies, it
will be imperative to provide a unique lifecycle with scopes
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clearly defined, such that it can serve as the lenses on which
a detailed comparative analysis can be conducted. Fourthly,
the unique nature of project versus products that can often
be standardised is a limitation of the analysis of the applica-
tion of digital twin on products and projects, as it cannot be
granular if specific products and projects are not employed
as case studies. As part of future study, specifc case study
products and projects should be used in conducting detailed
comparative analysis.

Lastly, the authors’ personal subjective judgement may
lead to inaccurate identification of digital twin applications or
a less comprehensive generalisation of applications at some
lifecycle phases. Based on the limitations mentioned, some
recommendations on the research are proposed to provide
insight for researchers to better conduct research in this area
in the future. It is recommended that literature should be
collected from a wider range of sources for future research.
For example, using various databases such as Scopus,Web of
Science and Science Direct, as well as expanding the scope
of relevant keyword searches. This will enable the study to
include more relevant literature and provide a wider picture
of how digital twin is being applied in the relevant industries.
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