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Abstract: The fetal heart rate (fHR) variability and fetal electrocardiogram (fECG) are considered the 
most important sources of information about fetal wellbeing. Non-invasive fetal monitoring and 
analysis of fECG are paramount for clinical trials. They enable examining the fetal health status and 
detecting the heart rate changes associated with insufficient oxygenation to cut the likelihood of 
hypoxic fetal injury. Despite the fact that significant advances have been achieved in 
electrocardiography and adult ECG signal processing, the analysis of fECG is still in its infancy. Due 
to accurate fetal morphology extraction techniques have not been properly developed, many areas 
require particular attention on the way of fully understanding the changes in variability in the fetus and 
implementation of the non-invasive techniques suitable for remote home care which is increasingly in 
demand for high-risk pregnancy monitoring. In this paper, we introduce an integrated approach for 
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fECG signal extraction and processing based on various methods for fetal welfare investigation and 
hypoxia risk estimation. To the best of our knowledge, this is the first attempt to introduce the auto-
generated risk scoring in fECG to achieve early warning on fetus’ safety and provide the physician 
with additional information about the possible fetal complications. The proposed method includes the 
following stages: fECG extraction, fHR and fetal heart rate variability (fHRV) calculation, hypoxia 
index (HI) evaluation and risk estimation. The extracted signals were examined by assessing Signal to 
Noise Ratio (SNR) and mean square error (MSE) values. The results obtained demonstrated great 
potential, but more profound research and validation, as well as a consistent clinical study, are needed 
before implementation into the hospital and at-home monitoring. 

Keywords: fetal heart rate; non-invasive monitoring; hypoxia; fetal ECG; signal processing; risk 
estimation 
 

1. Introduction 

Fetal heart activity tracking and wellbeing investigation is an essential part of prenatal care. 
Clinical fetal monitoring based on both antepartum fHR and fECG shows that most of the cardiac 
defects, as well as oxygen deprivation, have some appearance in the fECG morphology. In this sense, 
electrocardiography could be seen as one of the most important reference sources about fetal status 
during pregnancy and at labour with a high predictive value. This information can be exploited to 
diagnose fetal hypoxia and indicate changes in fetal heart patterns. Fetal heart monitoring serves the 
purpose of detecting signs of life in utero, including abnormal fHR or patterns, which may indicate 
oxygen deficiency or other pathological processes at their early stage to perform the appropriate 
intervention and prevent intrauterine fetal neurological damage and mortality. Besides other metabolic 
changes, fetal response to oxygen deprivation includes decreased heart rate, cessation of gross body 
movements and a reduction in oxygen consumption [1,2]. These changes enable to use of fHR 
monitoring as a potentially valuable approach for assessing hypoxaemic fetus and their 
oxygenation status in real-time. In addition, accurate identification of fetuses with sufficient heart 
rate and oxygenation can prevent unnecessary intervention; reduce the fetal morbidity and number 
of operative deliveries [3]. 

Although the fHR changes markedly during uninterrupted hypoxia, fetal deprivation or non-
reassuring fetal status can be observed only indirectly. To date, the majority of fECG studies on long‐
term electronic fetal monitoring are based on data acquired on a clinical basis which requires costly 
equipment, extensive training, a high level of technical skill, and is subject to high variability in data 
interpretation. To overcome these challenges, significant efforts are being made for both remote 
solutions for home fHR monitoring and signal processing technique. While the current standards of 
fetal monitoring do not support remote or at-home monitoring and require a high skilled physician to 
interpret results, research community and medical systems developers tend to capacity building and 
development of non-invasive, portable devices feasible to telemedical home care and long-term 
monitoring of fHR and fECG [4–6]. This is particularly relevant for developing countries and rural 
areas where access to prenatal care can be challenging due to different reasons, including physician 
scarcity, unavailability of equipment for accurate record keeping and peculiarities of rural geography. 
Moreover, remote, outpatient fHR monitoring provides the means to collect and analyze large ECG 
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data, enabling pregnant women to receive timely prenatal and antenatal care, which is crucial in high-
risk pregnancies.  

A new generation of perinatal care instruments offers the capability to deliver an undistorted fECG 
output from electrodes placed on the maternal abdomen, perform advanced morphological fECG signal 
extraction and analysis, and send raw and proceeded data directly to the physician. The idea is to 
develop a tool being intrinsically ambulatory, could also to perform signal recording and processing in 
the home environment on a long‐term basis [7] and offering the capability to carry out advanced 
morphological fECG signal analysis [8]. Improvement of technology for fHR monitoring is 
promising; however, it has not yet reached a sufficient level of accuracy to be approved for 
commercial devices [9]. A limitation of this approach is that it utilizes a just noticeable, very low 
signal to noise ratio (SNR). Most notably, this is because the fECG signal is produced by the fetal heart 
that is a relatively small source compared to the mother’s body. In particular, the size of the maternal 
electrocardiogram (mECG) found in the abdominal cavity is approximately 2–10 times the size of the 
fECG [10], which also makes it difficult to extract the fECG. Moreover, received abdominal signal 
includes not only mECG and weak signals of fECG but also other signals as maternal respiration, the 
electrohysterogram (EHG), the power line interference, and other noise coming mainly from maternal 
muscle activity. Thus, the suppression of mECG while preserving the fetal QRS complex is the most 
important stage in the fECG extraction from the maternal abdominal signal [11]. Further development 
and evaluation of these technologies remain a global priority. 

The present study is a continuation of the previous work [12] aimed at discovering interesting 
associations in gestation course data and finding risk factors in pregnancy-related to fetal hypoxia. Our 
current goal is to automate the in-utero fetal hypoxia risk factors detection to achieve early warning on 
fetus’ safety and provide the physician with additional information about the potential threat , if 
any. We investigate the possibilities of mECG elimination and fECG extraction from signal 
recorded non-invasively on the mother's abdomen and assess the feasibility of the fECG 
morphological evaluation to be included in the automatic screening tool for identifying fetuses at 
high risk of hypoxia. To be adopted with this process, we propose a novel methodology for 
automatic fECG signal processing and tune it into a fetal hypoxia risk-scoring tool. To our 
knowledge, this is the first trial to introduce auto-generated risk scoring in fECG. It is assumed 
that risk evaluation allows early warning on fetus’ non-reassuring fetal status and provides the 
physician with additional information about the possible fetal complications.  

2. State of the art 

Several surveys and systematic reviews of mECG elimination and fECG detection were found in 
the literature. In [13], the most common techniques developed over the last four decades with 
discussion both their advantages and shortcomings are given. Another review [14] is devoted to fECG 
signal processing and mECG cancelling methods based on the power line interference component 
(PLI). In [15], the system for indirect fECG was proposed and evaluated with direct fECG, which 
currently is the gold standard of fECG.  

A comparative analysis of single-channel fECG extraction methods is given in [16]. In the vast 
majority of cases, fECG is obtained from multichannel devices by evaluating independent sources of 
fetal heart bioelectrical activity [17]. While extracting unobservable signals, the sources are assumed 
to be statistically uncorrelated to each other and the known mixture of these signals [18]. In many 
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practical applications, the multichannel fECG extraction is based on Blind Source Separation (BSS) 
and its variations as BSS with Reference (BSSR) [19] and others. The study on this topic based on a 
solid theoretical approach known as Independent Component Analysis (ICA) [20] which requires the 
use of Higher-Order Statistics (HOS). However, for some cases as Gaussian sources, HOS methods do 
not allow to perform the separation. An alternative approach for source separation is second-order 
statistics (SOS). SOS-based methods include Singular Value Decomposition (SVD) [21], Principal 
Component Analysis (PCA) [22, 23], Periodic Component Analysis (πCA) [24], etc. Besides, many 
other methods have been applied for the same purpose, such as Extended Barros’s extraction algorithm 
and Zhang algorithm (ZA) [25], polynomial eigenvalue decomposition (PEVD) [26], generalized 
eigenvalue decomposition (GEVD) [27], fuzzy clustering c-means (FCM) [28], Compressed 
Perception (CS), parental suppression method (MCSM), Hilbert Huang Transform (HHT) [29], and 
others. Figure 1 shows a comparison of the most popular multichannel methods for fECG signal 
separation. Following the idea discussed in [30], ten approaches were compared according to their 
overall performance, SNR improvement level, computational cost, and implementation complexity. 
We used blue lines for real-time approaches and red lines for non-real-time approaches. 

 

Figure 1. The landscape of comparison for the multichannel methods used for fECG extraction. 

The ICA can be seen as a baseline technique since this is the most popular non-adaptive method 
for fECG extraction and has the average characteristics across the board. There are many modifications 
of the ICA technique discussed in the literature, including the Fast ICA algorithm (FastICA) [31], Joint 
Approximate Diagonalization of Eigen matrices algorithm (JADE) [32]. In [33], three-lead abdominal 
ECG (aECG) signals are collected and sent to the smartphone application, where the signal is 
processed using the FastICA algorithm to extract the signal components. The sample’s entropy is used 
to determine the fECG signal and calculate the fHR. In [34], the Space-Time ICA (ST-ICA) was 
implemented by combining the delays with FastICA. The preliminary results indicate that the temporal 
dynamics and the spatial information used by ST-FastICA enable a robust separation of ECGs in low-
dimensional recordings where the traditional implementation of FastICA is more likely to fail. The 
SVD is a spatial filtering approach that seeks a linear decomposition of a data matrix, which acts as a 
spatial filter and efficiently removes electrocardiographic artefacts [17]. PCA is a method that is often 
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used to reduce the dimensionality of large data sets. PCA might also be applicable to find a linear 
combination of vectors and separating mixed signals from statistically independent sources. 
Transforming the data into a new orthogonal coordinate system enables us to find the most significant 
vectors, and this operation increase interpretability while minimizing the loss of information [35]. The 
polynomial matrix eigenvalue decomposition (PMED) method is an extension of EVD in the case 
of the para-Hermitian matrix. It represents polynomially (or convolutively) mixed signals in the 
diagonal matrix form. This transformation provides both improved signal and noise identification 
and strong decorrelation. 

The subspace decomposition enables signal separation and estimation of the fECG signal. PMED 
is a blind approach that does not require a priori knowledge of the source signals or the mixing matrix; 
instead, it utilizes the space-time covariance matrix’s information carried by the observed sensor 
signals. Assuming that source signals to be statistically independent, the mECG amplitude can be 
compared to fECG to separate from aECG [26]. PMED does not require mECG as a reference and 
shows relatively low sensitivity to sensor placement. 

An analysis of mECG suppression techniques shows that more accurate results are obtained 
mainly with hybrid non-adaptive methods [36,37], ICA & PF [38]. The methods’ performance highly 
depends on the tasks for which they are applied (filtering, correlation, transformation, separation, etc.), 
which also explains the advantage of hybrid methods. In many cases, non-adaptive methods are used 
for preprocessing, and further analysis is performed with adaptive algorithms. Applying non-adaptive 
techniques enables partially separate source components and facilitate retrieval for an adaptive system. 
By this reasoning, we use a hybrid approach for fECG extraction and fetal R-peaks detection, which 
incorporates the ECG signal’s periodic nature and shows the accuracy of fECG extraction sufficient 
for its analysis. At the stage of the fECG extraction, the following techniques have been applied: PCA 
to determine the correlation between layering, JADE for blind signal separation, GEVD and πCA for 
separation of the mECG and fECG. 

3. Materials and methods 

Proposed fECG signal processing and hypoxia risk estimation pipeline comprises the following 
stages: 1) fECG extraction and separation, 2) fHR and fHR variability (fHRV) calculation, 3) hypoxia 
index (HI) evaluation and risk estimation. We detail the basic mathematical concepts and procedures 
step by step below. 

3.1. Fetal ECG extraction and separation 

The data model of signals received from the maternal abdominal surface can be represented as 
follows [39] 

𝑥(𝑡) = 𝐻𝑚𝑠𝑚(𝑡) + 𝐻𝑓𝑠𝑓(𝑡) + 𝐻𝑣𝑣(𝑡) + 𝑛(𝑡), (1) 

where 𝑥(𝑡) ∈ ℝ𝑁 denotes the N-channel measurements from the surface of the maternal abdomen and 
thoracic, 𝑠𝑚(𝑡) ∈ ℝ𝑀 describes the mECG entry, 𝑠𝑓(𝑡) ∈ ℝ𝐿 are the fECG components, 𝑣(𝑡) ∈
ℝ𝐾 and 𝑛(𝑡) ∈ ℝ𝑁 denotes the correlated (low-rank) noise and uncorrelated (full-rank) noise 
respectively; 𝐻𝑚 ∈ ℝ𝑁×𝑀  and 𝐻𝑓 ∈ ℝ𝑁×𝐿  matrices describe the signals received from a set of 
electrodes placed on the surface of the maternal body. Eq (1) in a compact form: 
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𝑥(𝑡) = [𝐻𝑚 𝐻𝑓 𝐻𝑣] [

𝑠𝑚(𝑡)
𝑠𝑓(𝑡)

𝑠𝑣(𝑡)

] + 𝑛(𝑡) = 𝐻𝑠(𝑡) + 𝑛(𝑡), (2) 

here matrix 𝐻 ∈ ℝ𝑁×(𝑀×𝐿×𝐾)  is a general mixing matrix through the sources and 𝑠(𝑡) ∈

ℝ𝑀×𝐿×𝐾represents all sources and structural noise jointly. When the general mixing matrix H is 
non-singular and the number of monitored channels N is equal to or greater than the effective 
number of M, L, K sources (𝑁 ≥ 𝑀 + 𝐿 + 𝐾), the observed mixture can be treated as defined or 
redefined. Thus, 𝑠𝑚(𝑡),  𝑠𝑓(𝑡)and 𝑣(𝑡)are considered as groups of mutually independent sources 
with some internal correlations. 

The fECG extraction procedure is summarized in Figure 2, with key elements described in detail 
below. In a generic way, the procedure comprises of six stages: 1) signal preprocessing, 2) mECG R-
peak detection, 3) sources separation, 4) mECG cancellation, 5) fECG R-peak detection, 6) fHR 
analysis for detection of fetal hypoxia. At the first stage, six maternal ECG signals (five abdominal 
and one thoracic) are preprocessed. The key operations include removing the baseline wander and 
cancelling higher frequency content with a second-order zero-phase low pass filter. On stage two, PCA 
decorrelation is applied. The mECG R-peak detection occurs on each pre-filtered channel, including 
PCA-transformed one. 

 

Figure 2. Block diagram of the fECG extraction procedure built into fetal hypoxia risk 
scoring tool. 

As a result, one of the mECG R-peak channels is selected as being the reference component. The 
third stage runs the source separation algorithm on the aECG data with the purpose of extract the fECG. 
On stage four, the mECG channels are cancelled using generalized eigenvalue decomposition and 
periodic component analysis. Stage five assumes fECG R-peak detection is performed based on the 
residuals containing the fECG through the fECG enhancing. Finally, a channel for fECG R-peak 
detection is selected. Finally, extracted fECG R-peak and corresponding fHR are scored for detection 
of fetal hypoxia. Below all the steps are presented and explained in more detail. 
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3.1.1. Signal preprocessing  

As it was mentioned above, readings obtained from the maternal surface include three types of 
data, 1) mix of low-amplitude fECG signal together with mECG signal, 2) high-amplitude baseline 
wander and 3) noise. The preprocessing stage involves the techniques for eliminating low frequency 
(below 0.05 Hz) baseline wander and removing high-frequency (above 50 Hz) noise from each channel. 
For this purpose, the second-order zero-phase low pass filter is used. 

3.1.2. The mECG R-peak detection 

The mECG R-peak is detectable from an independent maternal thoracic lead. The principal 
component analysis helps to obtain the maternal component for R-peak detection. To increase the 
mECG R-peak contribution on the principal components, the mECG R-peak detection is executed per 
both pre-filtered channels and channel after PCA transformation. As a result, one of the mECG R-peak 
channels is selected as being the reference channel. 

3.1.3. Source separation  

The source separation is carried out on the aECG to extract the fECG. With respect to the data 
model (1), this step assumes a specific separation of fECG from the structured noise v(t). From our 
previous analysis, BSS can be used to take advantage of the inter-channel spatial correlation of fECG 
sources, slightly improving the quality of fECG before detecting R-peaks. Namely, the JADE 
algorithm [40] is used. The number of extracted components is the same as the number of maternal 
channels recorded from the surface of the abdomen and chest of a pregnant woman.  

It should also be mentioned that due to the peculiarities of the implementation of a blind source 
separation algorithm, the order of the putative sources (in our case fECG) could not be guaranteed. 
This requires additional visual inspection of each fECG channel after the JADE has been applied. 

3.1.4. The mECG cancellation 

Whereas the mECG is considered as the main source of interference in fECG, iterative subspace 
decomposition is applied to eliminate maternal components from the recordings. As a basis for our 
method, we used the approach proposed in [41] and modified it as follows.  

First, we run GEVD to address the challenge with source separation. The GEVD of a pair of 
matrices (A, B) generalizes the EVD of a single matrix and produces the new matrices W and D in such 
way that 

𝑊⊺𝐴𝑊 = 𝐷,   𝑊⊺𝐵𝑊 = 𝐼,   (3) 

where A, B, D, W, I ∈ ℝ𝑁×𝑁 and A, B are initial symmetric matrices to be diagonalized, D denotes the 
generalized diagonal matrix of eigenvalues correspond to the generalized eigenvalue W with a set of 
real eigenvalues sorted in ascending order along its diagonal, and I is the identity matrix. 

Using GEVD, the pair of matrices are computed over the entire data set. The efficiency of linear 
decomposition with GEVD vary with the utilization of preliminary signal and noise subspace 
information collected in matrix pairs A and B.  
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Next, a linear source separation on πCA [42] was applied to the new matrix pairs. The periodic 
component analysis utilizes the concept of cardiac phase to sequentially change the ECG rhythm on a 
controlled rhythm. The algorithm calculates the timespan τt for which the ECG signal x(t) maximally 
correlate with x(t + τt). The πCA is purely compatible with the pseudo-periodic structure underlying 
the maternal and fetal signals and can be evaluated using the cost function as follows 

𝐽(𝑊) =
𝑊⊺𝐸𝑡{𝑥(𝑡)𝑥(𝑡 − 𝜏𝑡)⊺}𝑊

𝑊⊺𝐸𝑡{𝑥(𝑡)𝑥(𝑡)⊺}𝑊
=

𝑊⊺𝐶𝜏𝑊

𝑊⊺𝐶𝑥𝑊
, (4) 

here τt denotes the interested timespan for the corresponding ECG, Cτ refers to the lagged covariance 
matrix calculated over the timespan τt and W is a matrix resulting from GEVD of diagonalized matrices 
Cx and Cτ. 

The method reapplies a linear decomposition sequence to autonomously separate the mECG and 
fECG subsets, followed by noise removal for suppressing the mECG components, and finally, the 
background projection of the disabled elements into the input data space. This is an iterative procedure 
repeatedly carrying out a process until most of the maternal components removed from the fECG. In 
this regard, the preprocessing stage where simple R-peak detection is performed enables to detect the 
location of the maternal R-peaks. This information is passed to the mECG cancellation module, where 
fine-grained separation and sorting of the mECG and fECG components formed with respect to the 
degree of similarity across their periodic properties and the frequency of the mECG signal. 

3.1.5. The fECG R-peak detection  

At this step, fECG is enhanced using the FastICA algorithm as an additional filter and a channel 
for fECG R-peak detection is selected. The fECG R-peaks detection carried out via a dedicated fECG 
channel using the following procedure. The selected fECG component is run through a matched filter 
with a narrow fECG R-peak amplitude for maximizing its impulse response. The amplitude is specified 
further to visual inspection of the output. Then the results are squared and time-averaged through a 
moving average filter. The resulting local peaks can be thought-out as the fetal R-peaks. 

3.2. Fetal ECG parameters detection 

The fHR and fHRV are the primary sources of information about fetal well-being. 
Instantaneous fHR in beats per minute (bpm) is calculated for each cardiac cycle T (in milliseconds) 
as stated by Eq (5) [43]. 

𝑓𝐻𝑅 =
60000

𝑇
. (5) 

Following recommendations of the heart variability standard [44], time and frequency analysis of 
the fHR is calculated on 5-minute segment blocks. 

For the fHR values s[n] (n = 1, ..., N), also denoted in a vector form as �̅� , the fHR baseline 
variability (fHRV) is considered as the sign of severe fetal brain damage [45]. The fHRV is represented 
in the time domain as follows 
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𝑓𝐻𝑅𝑉̅̅ ̅̅ ̅̅ ̅̅ = �̅� =
1

𝑁
∑ 𝑠[𝑛].

𝑁

𝑛=1

 
(6) 

 

3.3. Hypoxia index (HI) evaluation and risk estimation 

Considering the fact that intrapartum fECG could be used as a screening method for detecting 
hypoxia [46], it would be safe to assume that hypoxia risk estimation is achieved through the hypoxia 
index (HI) proposed in [47], at least for the labor stage. The threshold HI for a set of fHR values s[n] 
is the sum of all deceleration periods (min) divided by the lowest fHR (bpm) in the decelerations, 
multiplied by 100. The resulting value indicates the intensity of hypoxia in the intrapartum fetal heart 
rate monitoring. 

Denoting one period of deceleration of fHR Tdec, and the lowest value of fHR as fHRmin_dec, 
the threshold hypoxia index HI can be expressed as follows 

𝐻𝑖 =
∑ 𝑇𝑑𝑒𝑐

𝑁
𝑛=1

𝑓𝐻𝑅min _𝑑𝑒𝑐
∙ 100. (7) 

The fetal hypoxia risk assessment is performed in accordance with [48], where the value of the 
Hi = 25 is a threshold level, for values greater than 25, the risk of fetal hypoxia shall be considered as 
high. With a calculated hypoxia index of Hi ≤ 24, the risk of fetal hypoxia is considered low.  

Additional information for detecting fetal distress can be obtained by a more profound analysis 
of the morphology of the fECG signal, e.g., the ratio between the amplitude of the fetal QRS complex 
and that of the T wave, ST-segment changes, etc., to be included in the risk scoring tool. 

4. Experiment and results 

We tested the implementation of the first stage of the fECG extraction for automatic processing 
and analysis of ECG and risk assessment of hypoxia. The experiment was performed using the Open-
source electrophysiological instrument set (OSET) tools [49]. As a result, the fECG was isolated, and 
R-peaks were determined. 

4.1. Data description 

For this experiment, the dataset [50] from PhysioNet [51] were used. Non-invasive fetal ECG 
signals were collected using routine abdominal electrocardiography. The fECG data came from the 
automated Cardiolab Babycard fetal monitor. The data consist of records in which fetal arrhythmias 
are diagnosed by echocardiography and equal control records in which normal rhythm is diagnosed. 
Records are annotated as follows: ARR - fetal arrhythmia, NR - normal fetal rhythm. The experiment 
used 10-second fragments of records NR_02 and ARR_01. 

Each record is with a record of four or five abdominal channels-abdominal ECG (aECG): 
Abdomens_1–5 and one thoracic lead, which corresponds to the selected ECG of the mother-maternal 
ECG (mECG). The experiment performed 10-second fragments of records ARR_01 and NR_02. The 



4928 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 4919–4942. 

sampling frequency of signals is 1000 Hz. The fragments of records ARR_01 and NR_02 are as follows 
(see Figures 3 and 4). In Figures 3 and 4, the upper signal corresponds to the thoracic lead, i.e., the 
mECG, the five lower signals correspond to the aECG. 

 

Figure 3. The raw data of ARR_01. 

Raw signals from abdominal channels contain not only the fECG but also primarily the mECG 
and various types of noise (e.g., maternal muscles activity or artifacts resulting from fetal movements). 

 

Figure 4. The raw data of NR_02. 

From Figures 3 and 4, the initial raw data under identical conditions, however, are visually 
different. This may be due to even the slightest difference in the location of the electrodes, the position 
of the fetus, the different ADC noises and many other factors that affect the ECG properties of the fetus 
discussed above. 
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4.2. fECG extraction 

Firstly, the preprocessing step was conducted by means of a second-order zero-phase lowpass 
filter with the parameters described above. The filter removes data from the baseline wander and cuts-
off high-frequency values equal to 50 and 60 Hz. The data ARR_01 and NR_02 after the preprocessing 
are presented in Figures 5 and 6. It can be observed that, unlike the raw data, there is no baseline 
wander in the processed.  

 

Figure 5. Preprocessed data ARR_01. 

 

Figure 6. Preprocessed data NR_02. 

The preprocessing parameters are defined in such a way as to remove the most of noise while 
preserving the elements of the fetal and maternal QRS complexes. Signal processing with a low pass 
filter enables filtering out the dc potentials that trigger the baseline wander. 

At the next step, the principal component analysis (PCA) was applied for maternal R-peak 
detection. In general, PCA enables to reduce the data dimensionality while preserving their informative 
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value. With fECG extraction, isolating the main components of the fetal ECG signal is complicated by 
the fact that even after filtering, the data contains noises that, along with the fetal and maternal ECG 
signals, will affect the dimension of the extracted components. Data of ARR_01 and NR_02 after the 
principal component analysis are presented as follow (see Figures 7 and 8). 

 

Figure 7. The results of the PCA of ARR_01. 

 

Figure 8. The results of the PCA of NR_02. 

In this matter, PCA is, in a way, signal preprocessing before extracting independent 
components using JADE. Following the overall procedure, the mECG was used for blind source 
separation using the JADE algorithm. The results of source separation of ARR_01 and NR_02 
are presented in Figures 9 and 10. 
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Figure 9. The results of source separation of ARR_01. 

For ARR_01, 2 out of 6 extracted components clearly correspond to the maternal ECG (1 and 5), 
two components correspond to the fetal heart (4, 6), and two components comprise the noise (2, 3). 
Based on the results of source separation, channel 4 was selected for fECG extraction for ARR_01, 
and channel 1 was selected for more accurate mECG extraction. 

   

Figure 10. The results of source separation of NR_02.  

For NR_02, 2 out of 6 extracted components clearly correspond to the maternal ECG (1 and 6), 
two components correspond to the fetal heart (2, 3), and two components comprise to the noise (4, 5). 
Based on source separation results, channel 2 was selected for fECG extraction and channel 1 for more 
accurate mECG extraction.  

After mECG cancellation, signals be subject to the GEVD and periodic component analysis 
for fECGs extraction. In ARR_01, the R-peaks of the selected independent fetal component (4) are 
used to calculate the fetal ECG period. The results of the periodic component analysis for ARR_01 are 
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shown in Figure 11. As seen, the first component (corresponding to the largest eigenvalue) bears the 
most significant similarity to the fetal ECG, while as the eigenvalues decrease (from the first to the 
last component), the signals become less similar to the fECG. 

 

Figure 11. Extracted fECG for ARR_01. 

Same as previous, the R-peaks of the independent fetal component (2) are used to calculate the 
fetal ECG period for NR_02. The first component in resulting periodic components for NR_02 has the 
most remarkable similarity to the fetal ECG. 

 

Figure 12. Extracted fECG for NR_02. 

Finally, R-peaks were detected in the fECGs; the result for ARR_01 and NR_02 is shown in 
Figures 13 and 14. The top row of each figure depicts fECG with marked R-peaks, and the bottom row 
shows the time between two sequential R-peaks (RR intervals). 
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Figure 13. Detected fECG R-peaks of ARR_01. 

 

 

Figure 14. Detected fECG R-peaks of NR_02. 

The fECG looks still noisy though R peaks are clearly demarcated, and P wave can be traced. 
Compared to NR_02, the R peaks in ARR_01 (bottom line) appear at irregular time intervals, and 
visually the P wave is unseen. However, the signs of irregularity occur between 6 and 7.5 seconds in 
NR_02. It can be considered as model perturbation and needs further investigation. Prolonged 
skewness and asymmetry of the RR-intervals can be used as a sign of arrhythmia or fetal heart failure 
and can potentially be used as a statistical indicator of the autonomic response to fetal hypoxia.  

In practice, only up to 30% of abdominal ECG recordings allow the R-wave of the fetus to be 
clearly seen. When the fetus is in a cephalic presentation, the R waves on the ECG of the mother and 
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the fetus are in different planes (have opposite signs), so the fetal signals can be identified relatively 
easily. In the case of co-directional R-waves in the mother and fetus, the fetal signals can be identified 
by averaging them after the maternal signal has been removed. In some cases, the averaging every 4 
beats enable to obtain a smooth shape of the beats [52]. 

5. Discussion 

For evaluation resulting fECG and its morphological elements, such as QRS-complex, P-wave, 
T-wave two statistical estimators, the Mean Squared Error (MSE) between raw and extracted ECG 
channels, and signal-to-noise ratio (SNR) between an original signal and the extracted component were 
used. The sensitivity of the selected components has been assessed. 

MSE is the most widely used and also the simplest complete reference metric, which is calculated 
by squaring the differences between raw and extracted fECG signal components and averaging them 
with the SNR of the related quantity. We used this statistic to assess the accuracy of the algorithm in 
terms of evaluating the fHR from their R-peaks. MSE is defined as [53]. 

𝑀𝑆𝐸𝐸1𝑘/𝐸4𝑘 =
1

12
∑ ∆ℎ𝑖

2.

12

𝑖=1

 (8) 

MSE metric was used to estimate the differences between matched values and computed fHR at 
twelve samples per one-minute segment, with, where denotes the assessed test fHR value on i-th 
segment and that denotes the referent fHR value for the same segment. 

Finally, the SNR variation in decibels (dB) was calculated to find the relationship between the 
desired fHR signal and extracted component [54]. 

𝑆𝑁𝑅 = 20 ∙ 𝑙𝑜𝑔 (√∑ 𝑟𝑖
2

𝐾

𝑖=1
/ ∑ (𝑓𝑖−𝑟𝑖)2

𝐾

𝑖=1
), (9) 

here r denotes a reference signal, and f is an extracted signal with K components. 
The normalized MSE for ARR_01 and NR_02 between raw and extracted ECG channels are 

shown in Figure 15. 

    

a                                            b 

Figure 15. MSE on ARR_01 (a) and NR_02 (b). 
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The MSE in dB for the overall assessment of the isolated 5-lead fECG signal for ARR_01 
and NR_02 records is presented in Table 1. As can be seen, the MSE is different for the two 
records with the same preprocessing and analyzing procedure. All MSE for NR_02 is higher than 
MSE for ARR_01. This could be explained by the higher noise level of the original recording 
NR_02. MSE enables to track the clean-up quality of the original recording for the highlighted 
fetal ECG. The result obtained indicates a significant improvement in the recording after the 
preprocessing and analysis of the ECG recordings. 

Table 1. Results of MSE averaging with the SNR of the related quantity for ARR_01 and 
NR_02 records. 

Record Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 

ARR_01 24,39 38,12 40,03 41,8 43,27 

NR_02 35,85 36,28 36,5 38,67 40,69 

The SNR estimates for the extracted fetal ECG, QRS-complex, P-wave, T-wave are shown in 
Figure 16, where the x-axis describes the noise level, and the y-axis describes the ECG channels. 

           

a                                                       b 

Figure 16. SNR on ARR_01 (a) and NR_02 (b). 

The visualization of the results indicates that the SNR level for extracted fECG varies for different 
morphological elements and channels. For instance, SNR for both records is the lowest for P-wave. 
This suggests that P-wave is the noisiest fECG element and, therefore, be the biggest challenge for 
extraction. The QRS-complex is less noisy and, therefore, the most easily extracted component. As a 
general matter, human eyes unable to recognize fetal heart sounds when the SNR is lower than -15 dB. 

Our experiment shows a moderate SNR for the extracted fECG that makes it possible recognition 
procedure. We compared our results with a set of similar studies conducted using both synthetic and 
real data from PhysioNet (see Table 2). In most baseline research, two real ECG datasets (adfecgdb 
and DAISY) and synthesized (FECGSYNDB) ECG datasets were used.  
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Table 2. SNR results for multichannel fECG extracted from abdominal mixture. 

Paper  Methods SNR(dB) 
Sargolzaei et al., 2008 [55] adaptive filter, SVD, ICA, wavelets -19.786 to -12.24   
Tang et al., 2016 [56] repetition frequency of heart sounds -26.7 to -4.4  
Fotiadou et al, 2018 [57] time sequenced adaptive filter -15 to -12 
Taha et al., 2020 [58] input-mode and output-mode adaptive 

filters with BSS 
-30 to 0 

Ours QRS  
Ours T-wave  
Ours P-wave 

second-order zero-phase lowpass filter, 
PCA, JADE, GEVD, periodic component 
analysis 

-27.59 to -3.926 
-24.09 to -8.06 
-26.62 to -11.74 

Results obtained in this study are comparable to the benchmarks, but as shown above, the mixing 
technique allows the detection of arrhythmias and ectopic contractions when sudden, and short-term 
changes in the morphology of the fECG signal occur. It can adapt quickly to abrupt changes in fECG, 
enabling the identification of new artefacts. Moreover, since the target application of this technology 
is improving the quality of the fetal ECG to detect hypoxia, it is possible to propose the inclusion of 
the results in the risk assessment scheme for further investigation on a long-term basis. 

In summary, non-invasive fECG has the potential to monitor fetal heart rate and fECG 
morphological parameters. In terms of fetal hypoxia, this information could be included in the auto-
generated screening tool to achieve early warning on fetus’ safety, identifying fetuses at risk of hypoxia, 
and enabling early intervention to improve perinatal outcomes. In this respect, the following should be 
taken into account: 1) separate abnormalities detected in fetal heart rate in the absence of disturbances 
of beat-to-beat variability or decelerations may not flag fetal hypoxia; 2) the likelihood of fetal hypoxia 
increases when there are signs of baseline bradycardia coupled with the loss of beat-to-beat variability 
and decelerations [52].  

Following up on our previous research, the updated profile of pregnancy complications associated 
with fetal hypoxia [12] includes a new section based mostly on fECG data received on non-invasive 
techniques. As is the case of the fetal biophysical profile that combines data obtained from different 
sources and calculates the score points, the profile assigns different scores for abnormal and normal 
points to achieve the risk level. Table 3 shows the profile of pregnant mother on both the fetal and 
maternal status related to the presence or absence of pregnancy complications associated with 
intrauterine hypoxia. 

Table 3. The profile of fetal and maternal status associated with intrauterine hypoxia. 

Parameters  Abnormal  Normal  
Maternal age, years [59,60,61*] < 20,  > 35* 20 to 35 
Combination of maternal height (cm) and Body Mass 
Index (BMI), (kg/m2) [62] < 156 and BMI > 25 ≥ 156, BMI < 25 

Adjusted gestational weight gain, kg [63] > 13.6 < 13.6 
General Gynaecological issues [58] yes no 
Urinary tract infection during pregnancy [61]  yes no 
Blood pressure before pregnancy [60] > 130/85  < 130/85  

Continued on next page 
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Parameters  Abnormal  Normal  
Maternal smoking [59] yes no 
Rh sensitization [59,63] yes no 
Illicit drug use [63] yes no 
Antidepressant use [63] yes no 
The number of fetuses in a pregnancy [59,60]  > 1 1 
Previous fetal death/stillbirth [63] yes no 
Blood рН [58] < 7.2 ≥ 7.2 
Chronic somatic pathologies [58,59] yes no 
Preeclampsia (new-onset hypertension after 20 weeks 
gestation with new-onset proteinuria) [64] yes no 

Intrauterine infections [59] yes no 
Placental abruption [59,63]  premature timely 
Erythrocyte Sedimentation Rate, ESR (21 weeks 
gestation) (mm/h) [12] 26–69 25 

ESR (30 weeks) (mm/h) [12,65] 4–69 30–35 
Ultrasound grading of placental maturity (the degree 
of the placental maturity) 30–38 weeks gestation 
(grade) [12,65] 

I I-II 

Vertical size of amniotic fluid on ultrasound 30–38 
weeks gestation (mm) [12,59] 269–306 82–268 

Vertical size of amniotic fluid on ultrasound 20–24 
weeks gestation (mm) [12,59] > 200 < 200  

Skewness of fetal RR intervals [30] yes no 
Loss of fetus beat-to-beat variability coupled with 
variable or late decelerations [52] yes no 

fHR (± 2 standard deviations), bpm [52,66*] < 120 (< 110)*,   
>160 (> 150)* 

120 to 160 
110* to 150* 

Short term fHR variation (no longer than 60 min) [66] 10 to 15 bpm   
PR vs fHR [46,52] inverted relationship  direct correlation 
Ratio between the amplitude of the fetal QRS 
complex and that of the T wave [46] ≥ 0.25 < 0.25 

Hypoxia index (HI) (during labor) [47] Hi ≤ 24 Hi > 25 

6. Conclusions 

In this study, the approach for automatic fECG processing and updating profile for fetal hypoxia 
risk estimation was proposed. The ultimate goal was to investigate the possibilities of extraction a 
fECG from signal recorded non-invasively on the mother’s abdomen and assess the feasibility of the 
fECG morphological evaluation to be included in the automatic screening tool for identifying fetuses 
at high risk of hypoxia. The set of new artefacts were defined and included in the profile of the pregnant 
mother for detecting hypoxic fetus. This is the first step towards a comprehensive risk score for fetal 
hypoxia that can be used not only in a clinical setting but also for remote outpatient monitoring 
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enabling pregnant women to receive timely prenatal and antenatal care, which is crucial in high-risk 
pregnancies. The main advantage of including fECG parameters into the risk profile is its simplicity 
of use and programming. As compared to others, this approach can be used for measuring the risk of 
fetal hypoxia in-utero. Particular attention was paid to fECG signal extraction from maternal 
abdominal ECG signals using a hybrid filtering technique. The blind source separation, the GEVD and 
periodic component analysis were applied at the stage of fetal ECG extraction. Detected R-peaks were 
used to determine RR-intervals and average fHR per minute. The study showed that the quality of 
fECG extraction is highly dependent on extraneous noise; under equal processing and signal extraction 
conditions, the MSE and SNR results are slightly different for ARR_01 and NR_02 records. For all 
that, the result of MSE and SNR shows that our approach is suitable for fetal heartbeat extraction and 
further fHR analysis from multiple abdominal recording. Moving forward, the appropriate choice of 
filters could significantly improve the quality and adequacy of extracted fECG signals and raise the 
prospect of their clinical approval. Therefore, the next work will be aimed at fine-tuning and studying 
different filtering methods for more accurate fECG extraction and fetal R-peaks detection. In this 
aspect, further work will focus on performing automatic extraction of morphological features such as 
PR intervals, QT intervals and ST segments. Non-linear control stability of heartbeat based on 
modified Zeeman’s heartbeat models [67] will also be discovered. Elaboration and validation of 
technology for fHRV and fetal risk assessment through the hypoxia index are also the subjects of future 
research, as well as an integrated model for fetal hypoxia risk assessment. We also expect that this 
approach will enable the provision of new medical services with improved accuracy and the 
advantages of low cost and easy implementation in the near future. 

7. Limitations  

We pay attention to the following limitations of this study. First, given the small number of 
published datasets, there was not enough data for analysis. Second, signal filters reduce noise and 
improve the signal, but at the same time, they can cause phase delays that affect morphology and 
temporal alignment between different leads. Next, there is a piece of evidence [68] that computerized 
interpretation of CTG in women with continuous fetal monitoring in labor did not improve clinical 
outcomes. Finally, this technique has not been tested for real data with the pregnant mother, which 
raises some doubts about the quick win of non-invasive fECG as an additional method for diagnosing 
fetal hypoxia. Multifetal pregnancy has not been taken into consideration during signal processing but 
is included in the profile. Clinical validation and more deep analysis are needed to completely adapt 
and include these parameters into the risk assessment tool. 
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