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1. Introduction 

The primary function of a differential amplifier is to produce 
an output signal that is a linearly amplified version of the 
normally small difference between two input signals, while 
rejecting the larger part of the two input signals that are 
common to both of them.  The extent to which it is able to do 
this successfully is quantified by the ‘Common-Mode-
Rejection-Ratio’ (CMRR), an important parameter in 
differential amplifiers for many applications, particularly in 
medical instrumentation [1]. The most commonly encountered 
common-mode voltage is line or mains interference, at 50Hz 
or 60Hz.  However, with increasing use of switched-mode 
power supplies and other higher frequency generators, good 
CMRR at higher frequencies is becoming more important to 
reduce the amplitude of high frequency common-mode signals 
in precision instrumentation applications.  There have been 
many improvements to the classical differential pair amplifier 
[2-4] that improve the CMRR.  However, almost all increasing 
the low frequency CMRR by reducing the common-mode 
gain, but little has been published to date to address the need 
for higher CMRR bandwidth performance.  This paper 
outlines a circuit technique that specifically addresses this 
issue by reducing the tail sink-current capacitance 
significantly, resulting in a substantial increase in the CMRR 
bandwidth.  Simulation results for an exemplary MOSFET 
source- coupled differential design, illustrate the advantage of 
the technique.  It produces a four-fold CMRR bandwidth 
improvement. 

 
 
 

2. Normal Circuit Operation 

The amplifier shown in Fig.1 is a standard type of MOSFET 
directly-coupled differential amplifier, appropriately labelled 
for the discussion that follows. It is well-known that such a 
source-coupled differential pair amplifier provides good 
performance provided M1 and M2 are well-matched.  That is  
achievable with good IC design techniques, such as the use of 
common-centroid layout methodology. 
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Fig. 1. Typical CMOS differential amplifier circuit 
RT, CT, Cdg3, CS and Cdb are defined in the text 
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M3 is in the common-gate connection with its gate connected 
to DC  voltage VGG , where VDD>VGG>VSS. The drain current 
IT is supplied by the Tail Current Generator (TCG) connected 
to its source. TCG can be merely a resistor but is often a 
current generator in order to increase the incremental output 
resistance, RT, seen looking into the drain of M3.  This needs to 
be a high value for a low common-mode gain and hence a 
high CMRR at low frequencies. TCG will have an 
unavoidable nodal capacitance, CT, associated with it. This 
needs to be low to maximize the CMRR bandwidth. 
 
The amplifier inputs 𝑣1  and 𝑣2 and, in this particular case, the 
single output 𝑣0  can each be considered to comprise two 
components, (i) a differential-mode component,𝑣𝑑, and (ii) a 
common-mode component, 𝑣𝑐.  
Thus,                

    𝑣1 = 𝑣𝑐 +
1

2
𝑣𝑑                                                                     (1) 

    𝑣2 = 𝑣𝑐 −
1

2
𝑣𝑑                                                                    (2) 

and,                      

 𝑣0 = 𝐴𝑑vd + 𝐴𝑐𝑣𝑐                                                                  (3) 

 
The differential-mode voltage gain,  𝐴𝑑 , and the common-
mode voltage gain, 𝐴𝑐 , are defined as follows, 

d

o
d v

v
A   With cv = 0                                                         (4) 

and,  

c

o
c v

v
A  With dv = 0                                                           (5) 

 
The CMRR, denoted here by the symbol 𝜚, is defined as,  

CMRR 𝜚
c

d

A
A

                                                                    (6) 

𝐴𝑑, and 𝐴𝑐  are frequency-dependent, hence so too is 𝜚. For the 
determination of 𝐴𝑑 the differential-drive considered, the 
long-tailed pair, formed by M1, M2 and its common-source tail 
current IT, is imagined to be reconfigured as two common-
source half circuits. By inspection, 𝐴𝑑 has a DC and very-low-
frequency gain of magnitude gm.R'L/2, where gm is the 
transconductance of each of M1, M2 at a DC operating current 
IT /2 and R'L = RL // rds   (rds being the drain-source incremental 
resistance of each of the MOSFETs ). Based on the work of 
[5], with appropriately modified notation, Ad exhibits a 
dominant pole at a radian frequency pc .   

   gdLLLmgdSgsS
pd CCRRgCRCR 


''1
1

               (7)

  

In this equation, Cgs and Cgd have their usual MOSFET 
significance and  LC is the load capacitance existing at the 
drain of each of M1, and of M2. 
 
For the determination of AC, the circuit is regarded as two 
separate stages, each having a source load TZ2  (where,

TTT CRZ //  and the drain load LLL CRZ //' ) 
Hence, in terms of the complex frequency variable s,  
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L
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                                   (8) 

Thus, Ac exhibits a DC and very low-frequency gain of 
magnitude -R'L/2RT,   and a pole at a radian frequency pc  and 

zero at zc ,                 

 
LL

pc CR'
1

                                                                     (9a) 

TT
zc CR

1
                                              (9b) 

TC comprises three capacitances, Cgd3 and Cdb3, respectively 
the drain-gate and drain-substrate capacitance of M3, together 
with CS the stray capacitance at its drain, thus, 
 

33 gbdbST CCCC             (10) 
 
The zero at zc  on the plot of Ac versus  now appears as a 
pole on the CMRR-frequency plot in addition to the pole at

pc , and the pole of pc on the Ac plot appears as a zero on 
the CMRR plot.  The nature of existing circuit designs is such 
that zcpc   , because RT >> R'L, RS. Furthermore, 

zcpc   because, even if (CT +Cgd2)=10CT, RT >> R'L,  RS 
(e.g,. RT >> 100 R'L). 
 
Consequently,

 zc  is the dominant pole on the CMRR-
frequency plot, and effectively determines the CMRR -3dB 
bandwidth because of the relationship of zc  to pd  and pc .  

Thus, on a Bode plot of 𝜚 versus  ,  𝜚 is constant at a value  

𝜚o = gm.RT only up to a frequency zc . From the above 
discussion, 
 
𝜚o zc  = gm    CT                                                                     (11) 
So, for a specified and practically achievable 𝜚o, zc  is 
maximized by minimizing CT. This can be done, as described 
below, by using a MOSFET variant of an elegant bipolar 
technique outlined by Baxandall and Swallow [6], but 
seemingly neglected in the literature until investigated in 
detail in recent years by Terzopoulos [7]. 
 
In passing, it is worth noting that the constancy of the product 
𝜚o zc  with variation in TR  is analogous to the constancy of 
the gain-bandwidth product in resistively loaded common-
source (and common-emitter) voltage amplifier stages. 

Fig. 2. Proposed differential amplifier configuration. 
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3. Improved CMRR Circuit 

The circuit shown in Fig.2 is a modified version of Fig.1, in 
that an additional common-gate connected P-MOS transistor, 
M4, is now incorporated into the circuit to compensate for 
Cdg3,  and M4 operates with its gate connected to a DC supply, 
VXX, where, VDD >VXX >VSS, and its source is connected to the 
gate of M3. It is supplied with a DC bias current, IX, and its 
drain is connected to the source of M3. A change in the drain 
voltage of M3 gives rise to a change 𝑖𝑗 in the gate-drain 
capacitance, Cdg3.  
 
A part, 𝑖𝑘 , of 𝑖𝑗  is returned to the source circuit of M3. Hence, 
at the drain terminal of M3, Cgd3 appears to be a substantially 
smaller capacitance C'gd3. 














j

k
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CC 1' 33                                                            (12) 

The nodal capacitance at the drain of M3, which was 

designated TC in Fig.1, now becomes TC '  
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If zc'  is the new CMRR bandwidth then,  

zc' = (1 / '
TC RT ) > zc                                                       (14) 

The condition 














j

k
i
i = 1 is not possible because of current lost 

in the gate-source capacitance, Cgs4, and source-substrate 
capacitance, Csb4, of M4.  

However, the ratio 














j

k
i
i  can be made to approach unity by 

suitably proportioning the gate width of M4 relative to that of 

M3, and by choice of the ratio 








T

X
I
I , for a given value of IT. 

4. Results and Discussion 

To demonstrate the proposed bandwidth extension technique, 
Fig.2 was simulated for an illustrative, but not necessarily 
optimised, design using CADENCE/ VIRTUOSO, with 
process tsmc18rf technology.  The channel length for all the 
transistors was 180nm, and the gate widths of corresponding 
transistor number subscript, were: w1=w2=1μm; w3= 10μm; 
w4=20μm. Test conditions were; RS=0, VDD=5V; VXX=-2.5V; 
VSS=-5V; VGG=1V; IX =0. 1mA; IT =1mA.  IX  was the output 
of  a PMOS 1:1 current mirror with a cascode output stage. 
TCG was an NMOS 1:1 current mirror with a double-cascode 
output stage added to give increased incremental output 
resistance. 
 
In the test mode,  Fig.2 was used throughout.  In the first 
series of tests the CMRR-frequency performance of Fig.1 was 
simulated. To achieve this the drain terminal of M4 was 
disconnected from the source of M1, and connected instead to 
VSS.  
The output of the TCG was set to 1mA. Graph (A) in Fig.3 
shows the resulting CMRR performance. 
 

 
 

 
 
 
 
In a second series of tests, intended to show the improvement 
in CMRR bandwidth, the circuit shown in Fig.2 was used with 
the output of the TCG set to 1.1mA. Thus, M3 operated under 
the same DC conditions for both tests. The CMRR 
performance is shown by Graph (B) in Fig.3. The CMRR 

Fig. 3. CMRR~Frequency dependence 
Curve A refers to the circuit of Fig. 1. and B to the circuit of Fig. 2. 

Curve C refers to the circuit of Fig. 1. with increased IT 
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Fig. 2. Proposed differential amplifier configuration. 
It is a modified vesion of Fig.1. M4, with its bias components, shown inside the 

coloured contour line, is intended to compensate for the existence of Cdg3 
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bandwidth, zc  as determined from the phase-shift 
corresponding to the -3dB points, is more than quadrupled. 
 
In a third series of tests to see what happens when the design 
of  Fig.1 was operated with same total current as the proposed 
design of Fig.2. IT in Fig.1 was 1.1mA, the current used for 
Fig.2. The resulting CMRR-frequency plot is curve C, which 
shows a lower cut-off frequency than curves A and B.  Curves 
A, B and C all have slightly different values of 𝜚o . This is 
because the different DC bias currents in the tests leads to 
differing values of the small signal parameters gm and rds of 
the MOSFETs (and hence differing values for RT). Curves A 
and C are for the same TC , but the effective TR of TC  is 
greater than that of A.  In accordance with the discussion in 
section 2, above, this  means a lower zc  but that the curves 
are coincident well above their cut-off frequencies. 
 
It should be noted that the load resistors (RL) have been used 
to simplify the discussion and analysis. The resistive loads 
gave a low frequency value of Ad in the region of 60dB.  In 
practice it is most likely that P-MOS transistors configured as 
active load current sources would be used instead to provide a 
considerably higher Ad . However, the method of increasing 
bandwidth of CMRR which has been presented here is still 
maintained with active loads in the drains of M1 and M2. 
 
In this paper a MOSFET differential amplifier has been 
considered because of the growing importance of CMOS in 
analogue circuit design. However, depending on the 
application, bipolar transistors maybe employed, instead of 
MOSFETs, with  M1, M2, M3, M4 being replaced by bipolar 
transistors Q1 , Q2, Q3, Q4 respectively. Then the presence of 
Q4 not only partially compensates of the collector-base 
capacitance of Q3 but, as shown in [7], it also increases the 
incremental output resistance seen looking into its collector.  

5. Conclusions 
 

The addition of only one transistor, plus associated bias 
circuitry, into a conventional source-coupled differential 
amplifier has been shown to extend the CMRR bandwidth 
substantially. This performance improvement is a result of 
local feedback reducing the source-coupled nodal capacitance 
of the differential pair. This technique is primarily applicable 
to an integrated circuit realization of the source-coupled 
differential amplifier because closely matched transistors 
operating at the same temperature are essential for satisfactory 
operation. 
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