
1 
 

Candidate Gene Variant Effects on Language Disorders in Robinson Crusoe Island 

Hayley S. Mountford 1, Pía Villanueva 2, 3, María Angélica Fernández 2, Zulema De Barbieri 2, 

Jean-Baptiste Cazier 4, and Dianne F. Newbury 1 

1 Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford 

Brookes University, Oxford, UK 

2 Department of Speech Language and Hearing Sciences, Faculty of Medicine, University of 

Chile, Santiago, Chile 

3 Institute of Biomedical Sciences, Human Genetics Division, Faculty of Medicine, University 

of Chile, Santiago, Chile 

4 Centre for Computational Biology, University of Birmingham, Edgbaston, UK 

 

Abstract 

Robinson Crusoe Island is a geographically and socially isolated settlement located over 

600km west of the Port of Valparíso, Chile. An unusually high incidence (30%) of the Chilean 

equivalent of developmental language disorder (TEL) has been reported in Islander children, 

with 90% of these affected children found to be direct descendants of a pair of original founder-

brothers, therefore strongly suggesting a shared genetic basis.  

Here we utilise whole-genome sequencing to investigate potential underlying variants in 

a panel of thirty-four genes known to play a role in language disorders, in seven TEL affected 

and ten unaffected islanders. We use this targeted approach to look for rare, shared variants that 
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may underlie the diagnosis of TEL in a Mendelian genetic model. We go on to test whether the 

overall burden of rare variants is enriched in individuals affected by TEL or with Islanders 

related to the founder-brother lineage.  

In the absence of explanatory rare variants, we further investigate these candidate genes 

within a complex model of inheritance, where inheriting a small number of moderate impact 

common variants may increase susceptibility of developing TEL. We examine if any variants 

segregate with affection status or with founder-brother-related status, and therefore may increase 

risk of developing a language disorder. Finally, we perform a pooled, gene-based tests to 

evaluate relationships between combined variation across candidate genes and TEL affection 

status. 

Here we report a comprehensive examination of genes directly implicated in language-

related mechanisms to identify ‘low hanging fruit’ of causative monogenic Mendelian variants, 

and complex association model of increased susceptibility in developmental language disorder 

found on Robinson Crusoe Island.  
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Introduction 

Developmental language disorder (DLD) is the term given to primary childhood language 

disorders, which are not explained by other neurobiological disorders such as autism spectrum 

disorder, developmental delay, or hearing loss (Bishop et al. 2017). DLDs are remarkably 

prevalent and estimated to occur in over 7% of UK school age children (Norbury et al. 2016). In 

real terms, this means there are two to three affected children in every classroom. Even with 

adequate access to speech therapy and educational support, half of children with delayed 

language do not fully catch up with their peers, continuing to struggle with language throughout 

their childhood and into their adult lives (Hulme and Snowling 2009). Children with language 

disorders often struggle academically, and have been shown to have an increased risk of poor 

mental health outcomes, and are more likely to be unemployed in adulthood (Conti-Ramsden and 

Botting 2008).  

Despite the remarkably high prevalence of DLDs, little is understood of the underlying 

aetiology. It is well established that DLD has a strong familial component, supported by twin and 

heritability studies (Stromswold 1998; Bishop et al. 2006; Barry et al. 2007). These familial 

disorders, termed Mendelian disorders, result from inheriting either one (dominant) or two 

(recessive) copies of extremely rare and damaging variants. Which act to disrupt protein 

function. The most well-known and clear-cut examples of Mendelian inheritance in language 

disorders can be found in a motor disorder known as childhood apraxia of speech (CAS), also 

known as developmental verbal dyspraxia. CAS is considered to be a sub-category of DLD that 

specifically refers to difficulties in the fine motor control required to produce and coordinate 

sounds into complete words and sentences, characterised by difficulties in producing speech 

sounds, dysarthric speech and poor oral motor control. The first CAS case to be solved involved 
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a dominant mutation in the gene FOXP2 was found to be shared by all CAS-affected members of 

a large multigenerational pedigree, known as the KE family (Lai et al. 2001). The p.Arg553His 

FOXP2 mutation is fully-penetrant in the KE family, meaning that all carriers have CAS and 

non-carriers do not. A number of subsequent studies have identified additional FOXP2 mutations 

in other unrelated individuals as the cause of CAS (MacDermot et al. 2005; Tomblin et al. 2009; 

Turner et al. 2013; Moralli et al. 2015; Liegeois et al. 2016; Reuter et al. 2017) providing further 

evidence of the gene’s role in language. A small number of other genes have also been 

implicated in the CAS phenotype. One such gene is the protein transporter ERC1 (Thevenon et 

al. 2013) which was identified by overlapping 12p13.33 deletions in five unrelated CAS cases.  

The CAS phenotype is considered extremely rare, and very few children are found to 

carry causative variants in FOXP2 or ERC1. It is a similar story with other Mendelian causes of 

DLDs, and there are very few examples of genes where a high impact familial variant is shared 

among affected family members. One such example is the transmembrane protein encoding gene 

TM4SF20, in which a deletion of the second last exon leads to DLD and white matter hyper-

intensities (Wiszniewski et al. 2013). The heterozygous deletion, found in children of mainly of 

South East Asian descent, was reported to show near-complete penetrance, meaning that deletion 

carriers were extremely likely to have a DLD phenotype.  

Clear-cut Mendelian causes of language disorders are still relatively rare and are the 

exception rather than the rule. More commonly, genes are implicated in comorbid, overlapping 

disorders such as dyslexia, autism spectrum disorder and intellectual disability syndromes, still 

with DLD as a prominent feature as part of a complex disorder. A recent illustrative example is 

the identification of chromatin modelling gene CHD3 (Snijders Blok et al. 2018). Mutations 

which led to changes in the ATPase/helicase domains of this protein resulted in CAS, 
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accompanied by intellectual disability, and macrocephaly in 35 unrelated individuals. Mutations 

in CHD3 result in a more global neurodevelopmental syndrome rather than a language specific 

phenotype.   

Similarly, mutations in the glutamate-gated ion channel gene GRIN2A can result in 

dominant DLD and epilepsy, with or without intellectual disability (Endele et al. 2010; Carvill et 

al. 2013). The CAS and DLD phenotypes found seen in these CHD3 and GRIN2A examples are 

considered to be a primary feature of the disorder, as opposed to a secondary deficit of a more 

complex disorder. They do, however, reflect a difference in opinion of what constitutes a 

primary language disorder compared to a secondary feature of a broader neurodevelopmental 

syndrome. As there are very few genes which result in primary language disorders, genes 

implicated in syndromic neurodevelopmental disorders represent a substantial increase in our 

understanding of the genetic aetiology of language.  

The family-based studies described above can provide starting points in understanding 

the biological base of language disorders through the identification of rare Mendelian variants. It 

is, however, not the case that the Mendelian inheritance model fully explains the underlying 

genetics of all DLDs. As genetic technologies and knowledge develops, we are slowly building a 

picture of genetic susceptibility within a complex inheritance model; where a number of variants 

are inherited together, interacting in particular environmental and cellular circumstances to result 

in a language disorder phenotype. These ‘risk’ variants are likely to be much more common in 

the population (minor allele frequency (MAF) ≥5%) and confer a moderately damaging effect. 

This contrasts with Mendelian recessive and dominant variants which tend to be extremely rare 

in the population (MAF≤1%) and are much more damaging to the resulting protein.  



6 
 

When inherited in combination with other ‘risk’ variants, they can combine together to 

become damaging and result in the DLD phenotype. This is more akin to cancer or diabetes; 

where there are a number of more common risk variants that interact with environmental factors. 

These risk variants each confer a small increase in an individual’s susceptibility to develop a 

particular disorder. Our understanding of the role of genetic risk factors in language disorders 

lags behind other neurological disorders such as schizophrenia and autism spectrum disorder 

(ASD), which are much better characterised.  

One of the best characterised examples of risk variants in language are in the gene 

CNTNAP2, which was first identified as a candidate for DLD through its functional interaction 

with FOXP2 (Vernes et al. 2008). The CNTNAP2 gene encodes a neurexin-family synaptic 

protein and has been found to be associated with DLD (Devanna et al. 2017), epilepsy (Zweier et 

al. 2009) and ASD (Alarcon et al. 2008; Arking et al. 2008; Bakkaloglu et al. 2008). Other 

language-implicated genes have been found to associate closely with related comorbid disorders, 

suggestive of overlapping disease aetiology. This underlying comorbidity appears to be the rule 

rather than the exception.  

Genes associated with language disorders and comorbid phenotypes, as well as details of 

the methods used to identify them, are reviewed in Chen et al. (2017), Deriziotis and Fisher 

(2017) and Mountford and Newbury (2018).  

In reality, both rare damaging and common variants are likely to contribute to DLD. This 

can make the identification of novel variants challenging. The detection of common variants 

requires large (tens of thousands) of individuals all phenotyped in the same way. Family-based 

studies genetic studies are performed on a much smaller scale, but variants identified in one 
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family tend to be extremely rare, and unlikely to replicate in other pedigrees. To narrow the 

genomic regions in which to look for the candidate variants, a pedigree needs to contain both 

affected and unaffected individuals, and include as many second-degree relatives as possible. 

Extensive pedigrees provide exceptional opportunities to narrow down the regions shared by 

affected individuals (and not shared by unaffected individuals), ultimately narrowing the search 

space that contains the causative variant.  

An exceptional example of a large pedigree with DLD comes from Robinson Crusoe 

Island (RCI). RCI is geographically and socially isolated, located over 600km off the coast of 

Chile. Islander children have an exceptionally high occurrence rate (62.5%) of speech and 

language disorder. Half of the cases (56%) have language delay in isolation with no evidence of 

intellectual disability, or other neurological disorders that may affect language ability 

(Villanueva et al. 2008; De Barbieri et al. 2018). This specific type of language disorder is 

named Trastorno Especifico de Lengauje (TEL). The Chilean term which when translated to 

English means ‘language specific disorder’ (De Barbieri et al. 2018). The remainder present with 

more generalised developmental or neurological disorders in which language delay is a 

secondary feature of an overlapping related disorder (e.g. ASD, developmental delay). 

RCI provides a unique cohort in which to study the genetics of language disorders; a 

geographically isolated population, founded in 1876 by 64 individuals. The current population 

has over 800 inhabitants, with a high consanguinity rate (14.9%) (Villanueva et al. 2014). This 

means that risk alleles that have been inherited from original founders may be greatly enriched in 

the current cohort, providing substantial power to detect contributory variants. The strength of 

this population is in the consanguinity and isolated nature of the population, despite relatively 

modest sample numbers. Previous gene dropping simulations reported in Villanueva et al (2015) 
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within the observed pedigree structure indicate that causal allele frequencies will be consistently 

and significantly elevated above expected for a range of allele frequencies and founder allele 

combinations, and even rare (1%) founder alleles will be greatly enriched (13%) in the current 

cohort. 

A previous study of the RCI population used whole exome sequencing to identify a rare 

nonsynonymous p.Asp150Lys (rs144169475, chr4:g.47,907,320A>T hg19) variant in the nuclear 

transcription factor X-box binding-like 1 gene, NFXL1 (Villanueva et al. 2015). This variant was 

found to be enriched in islanders with the TEL phenotype (39%) compared to those with typical 

language development (TLD) (10%) (p=2.04x10-4) and accounted for 7% of the trait variance 

seen on the island (Villanueva et al. 2015). Although strongly associated with TEL, this variant 

was found to occur in language-typical Islanders and was not present in all TEL individuals. It 

therefore only explains part of the TEL occurrence in this population. 

The p.Asp150Lys variant was reported by (Villanueva et al. 2015) was detected in 4.2% 

of the 320 Chilean and Columbian controls tested (27/640 alleles tested), and not detected at all 

in European controls (0/254 alleles tested). Villanueva and colleagues also showed that rare 

coding variants in NFXL1 were enriched in a cohort of 117 unrelated cases from the UK-based 

Specific Language Impairment Consortia cohort. While this replication cohort is small in sample 

size, it provides further independent evidence for the role of NFXL1 in language disorders.  

Since this publication, additional population data has become available through the 

gnomAD database (Lek et al. 2016), showing the variant is present at an allele frequency of  

5.047% in Latinos (AMR) (1772/35,112 alleles tested) and includes 57 homozygotes. The 

variant is still extremely rare in people of European decent (0.00078%) (1/126,384 alleles tested) 
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and across all gnomAD populations it is 0.65% (1825/281,822 alleles tested) and is therefore still 

considered to be extremely rare variant. As the Robinson Crusoe Islanders are predominantly of 

Chilean ancestry, then careful selection of relevant population specific allele frequencies are 

important when trying to understand the effect of a variant. As larger control sample sets become 

available, more accurate estimates of allele frequencies can be derived. In this instance, the allele 

frequency of the p.Asp150Lys variant is still enriched in Islanders compared to the Latino 

population in general - 11.3% compared to 5% respectively. The incidence of this risk allele is 

significantly increased among those Islanders affected by TEL (19.4%) (Villanueva et al. 2015). 

It is, however, clear that this variant alone does not explain the entire risk. Instead, we propose 

this variant is a genetic modifier, conferring a moderate increase in risk of TEL and may act 

alongside another, as yet undiscovered, rare damaging variant.      

Given the pedigree structure and isolated nature of the RCI population, it is hypothesised 

that the speech and language disorders present on RCI are caused by rare (minor allele frequency 

(MAF) of ≤1%) genetic mutations with a high-risk effect, or by combinations of genetic variants 

that together confer a high risk. Although previous publications have presented exome sequence 

data in this population, a full assessment of the entire genome has yet to be made. In the current 

study, we use whole-genome sequence data from 7 TEL and 10 typical language development 

(TLD) islander individuals to fully assess the role of rare and damaging variants in genes 

implicated in language disorders, including those associated with both primary language 

disorders and overlapping syndromes. We will examine whether rare and common variants in 

these thirty-four language candidate genes are risk factors for TEL in this extensive pedigree 

through association analyses. This whole-genome sequencing approach provides complete 

capture of the gene regions, covering coding exons, untranslated and intronic regions in its 
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entirety, enabling a comprehensive assessment of existing candidate genes within this 

population.   

Villanueva et al. (2014) ascertained near-complete genealogical records of the RCI, and 

using this resource found that 90% of islander children with TEL are directly descended from a 

pair of original founder-brothers. Based on this finding, we further investigate variants patterns 

in founder-brother-related individuals allowing us to evaluate the hypothesis that causative 

variants may be shared or over-represented in founder-brother-related TEL individuals, thus 

contributing to an increased incidence of language disorder. Both rare and common variants in 

these thirty-four language candidate genes will be tested for segregation, enrichment and 

association in founder-brother-related-islanders.  

 

Materials and Methods 

Participants were assessed in line with current diagnostic practices set by the Chilean 

Ministry of Education, and described in detail in De Barbieri et al. (2018). The ethics department 

of the University of Chile approved the project “Genetic analysis of language-impaired 

individuals from the Robinson Crusoe Island” – Project Number 001-2010. Informed consent 

was given by all participants and/or, where applicable, their parents. The test battery was 

performed in Chilean Spanish, by native speakers, who assessed phonological production 

(TEPROSIF-R) (Pavez G et al. 2008), expressive and receptive morphosyntax (Toronto Spanish 

Grammar Exploratory (TGE) test) (Pavez MM 2003), and non-verbal intelligence (Columbia 

Mental Maturity Scale) (Burgemeister et al. 1998). Children met the criteria for a diagnosis of 

TEL if they fell either 2SD below the expected score, or more than two years below the score 

expected for their age (TEPROSIF-R), below the 10th percentile (TGE test), and had a neuro-
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typical non-verbal IQ score above the 10th percentile. Individuals describe as having typical 

language development (TLD) scored more than 2SD below expected and more than two years 

below their expected age (TEPROSIF-R test), above the 10th percentile (TGE test), and above 

the 10th percentile on the non-verbal IQ test.   

Adults were assessed on verbal fluency using the Barcelona test (Peña-Casanova et al. 

1997), verbal comprehension using the Token test (De Renzi and Vignolo 1962), and non-verbal 

ability using the Raven progressive matrices (Raven 2003). TEL adults scored below the 10th 

percentile on either the verbal fluency or verbal comprehension, and above the 10th percentile in 

the non-verbal IQ score. TLD adults scored above the 10th percentile on all three measures. 

Diagnostic criteria and language assessments were set as reported in De Barbieri et al 2018. 

Seventeen islanders were selected for sequencing based on the most distantly related and 

therefore most informative individuals representing affected (TEL) and unaffected (TLD) 

phenotypes. Whole-genome sequencing performed by Oxford Genomics using Nimblegen™ 

capture and sequenced on the Illumina HiSeq platform with 98.2% of bases covered to a 

minimum coverage of 10x and 88.53% covered to 20x. Quality control and sequence alignment 

(to build hs37d5) were performed by the Oxford Genomics service using their standard analysis 

pipeline.   

Variant calling was performed using Platypus (Rimmer et al. 2014) and GATKv3.5-0 

(Van der Auwera et al. 2013) using best practises. Bcftools 1.2 and htslib-1.2.1 

(http://github.com/samtools/bcftools) were used to intersect high confidence variants called by 

both algorithms. PASS variants were filtered using VCFtools 0.1.14 (Danecek et al. 2011). 

Additional hard filtering was used to filter variants with a map quality (MQ) score of ≥40, total 
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allele count (AN) of ≥26, and total read depth (DP) of ≥140 across all 17 samples using Bcftools 

1.7 and htslib-1.2.1 (http://github.com/samtools/bcftools). Variant calls, in VCF format, were 

split and left aligned using Bcftools to ensure one variant per line, and therefore compatibility 

with downstream applications.  

The list of genes implicated in language disorders, and by proxy language, was obtained 

from the literature, previously reviewed in Chen et al. (2017), Deriziotis and Fisher (2017), and 

Mountford and Newbury (2018). Additionally, we included CHD3 which was reported in 

(Snijders Blok et al. 2018), plus six novel candidate language genes (KAT6A, MKL2, SETD1A, 

TNRC6B, WDR5, and ZXHF4) recently reported in Eising et al. (2018). Complete canonical gene 

region coordinates, including the entire annotated 5’ and 3’ untranslated regions, were obtained 

from UCSC Genome Browser hg19 build (https://genome-euro.ucsc.edu) (supplementary Table 

1), and variants falling within these thirty-four regions were extracted from the VCF using 

VCFtools 0.1.15 (Danecek et al. 2011).  

Variant annotation was performed using Annovar (release 2018Apr16) (Wang et al. 

2010) with dbSNP (avsnp150), splice site prediction (dbscSNV version 1.1), variant 

pathogenicity prediction (dbSNP35a), ExAC exomes allele frequency data (2015 release) (ALL 

n=125,748), gnomAD genome collection (v2.0.1) (ALL n=15,708, Admixed American (AMR) 

n=424, non-Finnish European (NFE) n=7,718), 1000 Genomes Project (1000g2015aug) allele 

frequencies (ALL, AMR, and EUR (European)), and Clinvar version 20180603 databases (hg19 

build).  
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Variant filtering and prioritisation was performed using Linux command line to identify 

potentially causative variants that are shared between all TEL or all founder-brother-related 

individuals using both recessive and dominant inheritance models.  

Rare variants with a minor allele frequency of ≤1% in gnomAD AMR whole-genome 

population data, and falling within a language gene region (coding, intronic and UTR) were 

tested for enrichment in affected (TEL or founder-brother-related individuals) using students T-

test.  

Segregation analysis was performed on all variants (both rare and common) to test for 

variants which showed complete segregation between TEL affected individuals but not with 

TLD individuals. This approach was also used to identify variants that were shared by all 

founder-brother-related individuals and not shared by non-founder-brother-related individuals.   

To test for the effect of all variants (rare and common) acting in combination in an 

individual gene, a gene-based association test was performed using the SKAT test in RVTESTs 

(Zhan et al. 2016) on all variants falling within the gene region (coding, intronic and UTR). 

Association testing was performed on both SNVs and indels, excluding those in HWE ≤1x10-5 

which was calculated in Plink 1.90 (Purcell et al. 2007). Thresholds for statistical significance 

were set by Bonferroni correction, to account for multiple testing.  

A flow diagram of the workflow and statistical analyses is shown in Figure 1.  

 

Results 

Sequencing of Language Gene Regions 
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A total of thirty-four genes implicated in language disorders (and therefore language) 

were identified through a combination of current literature reviews (Chen et al. 2017; Deriziotis 

and Fisher 2017; Eising et al. 2018; Mountford and Newbury 2018; Snijders Blok et al. 2018). 

The combined thirty-four language gene regions spanned a target region of 12.6 Mbp. Variants 

annotated by Annovar as ‘non-coding RNA’ were excluded from analysis, which included all 

variants contained within in ABCC19, and it was therefore excluded from further analysis 

resulting in only 33 genes remaining. After variant calling, a total of 33,966 non-reference calls 

were identified within the selected gene regions (exonic, intronic, untranslated (UTR), and 

potential splice sites (±3bp)). This consisted of 29,510 single nucleotide variants (SNVs) and 

4,458 small insertions and deletions (indels). Sequenced individuals had a median of 13,817 

variants calls (range=12,902-16,610) (Table 1).   

 

Rare Mendelian Variant Analysis 

We first performed a search for variants contained with potential for a clear functional 

impact, therefore contained only within exons or potential splicing site regions. 137 (129 SNVs, 

8 indels) variants were detected (median=41, range=33-52).   

To further narrow these to potential variants of interest, variants predicted unlikely to 

have an amino acid of the protein (synonymous (74 variants) or nonframeshift indels (7 

variants)) totalling 81 variants were dropped from the analysis. This left a total of 56 variants, 

consisting of one potential splice region variant, one stop-gain, one frameshift insertion and 53 

missense variants (median=16, range=10-22) (Table 1).  
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Finally, to identify novel or extremely rare variants that may be impacting on the TEL 

phenotype, variants were excluded if they had a minor allele frequency (MAF) of more than 1% 

(MAF ≥0.01) in the gnomAD AMR population and more than 5% (MAF ≥0.05) in the gnomAD 

ALL dataset. A total of fifteen rare and nonsynonymous variants were identified in the 17 

sequenced islanders (median=1, range=0-3), spanning ten different genes (Table 2).   

To assess a potential impact of these prioritised variants, and therefore their potential 

pathogenicity, functional annotations were investigated. All 15 variants were missense SNVs, 

with no loss of function variants (stop-loss, stop-gain, or frameshift) being prioritised. Similarly, 

no potentially damaging splice site mutations were found to be rare (MAF≤0.01).  

None of the prioritised rare nonsynonymous variants were found to segregate with either 

TEL status or were shared by the direct descendants of the founder brothers. These findings 

indicate there is no single high impact Mendelian variant in previously reported language genes 

that fully explains the TEL phenotype in the RCI population. The rare and nonsynonymous 

variants detected spread across many of the candidate genes and were found in both TEL and 

TLD individuals alike, often occurring in a single individual. Six rare nonsynonymous variants 

were found only in TEL individuals. These occurred in the ROBO1, NFXL1, KIAA0319, ERC1, 

ATP2C2, and TNRC6B genes. Six further rare variants were found only in TLD individuals. 

These were contained in CNTNAP5, ROBO2, KAT6A, ZFHX4, MKL2 and ATP2C2. Finally, 

three variants were found in both TEL and TLD individuals with two found in ROBO2 and one 

within ZFHX4. 

All fifteen of the prioritised variants were missense, single base pair changes rather than 

indels, and therefore the a in silico missense pathogenicity prediction score could be used to 



16 
 

interpret potential pathogenicity. To investigate the functional impact of these missense 

mutations, variants were flagged as potentially damaging if they were predicted to be damaging 

by at least seven of ten variant prediction tools (SIFT, Polyphen2, Polyphen2_HDIV, LRT, 

MutationTaster, MutationAsseser, FATHMM, Provean, MetaSVM and MetalLR). Only one of 

the fifteen variants met these criteria, c.C256T (p.Arg86Trp) in ATP2C2, which was detected in 

a homozygous state in a single individual with typical language development (TLD-2). This 

variant is unreported (MAF=0.0000) in the AMR and ALL genome control populations and is 

extremely rare (MAF=0.00001658) in the ExAC ALL dataset (n=125,748). It has not previously 

been reported in a homozygous state. While this is a likely functional variant in a gene of 

interest, as it was identified in an unaffected individual and so is unlikely to play a role in the 

language disorder seen on RCI.   

We can therefore conclude that there is no causal variant within a language-implicated 

gene that is solely responsible for the language phenotype seen in the RCI. Nonetheless, it 

remains possible that Islanders may have a genetic susceptibility resulting from combinations of 

rare and/or common variants each conferring a moderate effect size. 

Rare Variant Burden Analysis 

To examine whether an overall burden of rare variants across the entire gene regions 

(inclusive of exons, introns, UTRs and potential splice variants) were contributing directly to 

TEL affection status, or were enriched in founder-brother related individuals, rare variants (≤1% 

in AMR genome population data set) were subset across the full gene regions. A total of 4,998 

rare (≤1% in gnomAD AMR) variants were detected across the 33 language genes (12.6Mb) in 

17 sequenced islanders, with a mean of 435 rare variants (1 rare variant every 29Kb) 
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(median=340, range=266-732) (Table 3). Interestingly, the TLD group (n=10) were found to 

harbour a higher number of rare variants across the thirty-three language genes than the TEL 

group (n=7). The TEL group had a mean of 390.5 rare variants, compared to 466.1 found in the 

TLD group. A student’s t-test indicated that this group mean difference was not significant 

(p=0.3558).  

To investigate whether direct descendants of the founder-brothers carry a higher number 

of rare variants within the language genes and are therefore at a higher risk of developing 

language difficulties, a test of variance was performed on the founder-brother-related group 

(n=14) compared to the non-founder-brother-related group (n=3). The founder-brother-related 

individuals carried a higher mean number of variants (mean=456.79) compared to the non-

founder brother related individuals (mean=333.33) although this did not reach significance 

(p=0.0743). These findings therefore indicate that combinations of rare variants across the 33 

genes are unlikely to be responsible for the developmental language disorder seen on RCI. 

Variants Segregation Analysis 

Initial exploration of the genome data focussed on rare variants. To explore the role of 

common variants, we assessed all 33,966 SNVs and indels from thirty-three language genes. In 

the absence of co-segregating rare variants, we applied a wider analysis that included all variants 

across the language-candidate genes. All 33,966 SNVs and indels from thirty-three language 

genes were assessed for co-segregation in the founder-brother-related individuals (TEL n=6, 

TLD=8).  

Three hundred and twenty-seven variants were found to be homozygous across all six 

TEL founder-brother-related individuals and 54 variants were found to be heterozygous in all six 
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TEL founder-related individuals. However, all these variants were also found to occur in TLD 

individuals. One variant, an intronic SNV in CNTNAP5 (rs9309831), was found to occur in a 

homozygous state in all 6 TEL cases. However, this variant was also found in a homozygous 

state in three TLD participants and in a heterozygous state in the remaining 5 TLD participants. 

Upon further investigation, this variant was found to have a minor allele frequency of ≥0.9. Five 

intronic variants (rs779979, rs779980, rs7605310, rs13402327 and rs2565748), all in CNTNAP5, 

were found to be heterozygous in all TEL cases, but were also observed in a heterozygous state 

in 4 of the 8 TLD participants. 

These five intronic variants identified in CNTNAP5 may be inherited together in a 

haplotype block, increasing susceptibility of TEL. To investigate if these variants fall within a 

shared region, we produced a genotype grid in order to visualise the region (Figure 2). The 

genotype grid shows there is no clear region shared between the TEL founder-brother related 

individuals, and there are a large number of non-segregating variants between the five variants. 

The lack of clear genotype segregation in the CNTNAP5 region suggests it is not associated with 

TEL affection status in founder-brother related individuals.  

Gene-based Analysis of Common and Rare Variants 

Finally, to assess the possibility of a complex genetic mechanism, we performed gene-

based association analyses of all variants (common and rare) across the language candidate 

genes. Collapsing variants into gene-regions allows for signals that may not be directly covered 

by the sequencing (upstream variants of a gene) and will improve detection of this signal by 

combining all variants into a gene-based test. Therefore, a statistically significant gene-based test 

is a strong indication of genetic contribution to TEL in this population, at a whole-gene level. 
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Thirty-three genes containing 33,966 identified variants were tested using the kernel based 

SKAT test of association in the RVTESTs package (Zhan et al. 2016).  

When using the TEL status as a categorical variable, no genes (Table 4) reached 

statistical significance (Bonferroni corrected p=0.00073), and only one gene, NOP9, was 

nominally significant (p=0.0407). 

To assess whether complex patterns of variants are enriched in original founder-brother-

related individuals, we repeated the SKAT test in founder-brother-related against non-founder-

brother-related individuals. Again, no gene was significantly associated after a Bonferroni 

correction (p=0.00073). Two genes (DYX1C1 and SETBP1) had p-values <0.01 (p=0.0097 and 

p=0.008 respectively), with a further four genes (FOXP1, MKL2, RBFOX2 and SETD1A) were 

found to be nominally significant at p≤0.05.  

 

Discussion 

Robinson Crusoe Island is an isolated population of admixed Chilean and European 

ancestry reports to have an unusually high incidence of language disorder, termed TEL in Chile. 

Near-complete genealogical records indicate that 90% of affected Islander children are direct 

descendants of a pair of original founder-brothers, strongly suggesting a genetic founder effect 

(Villanueva et al. 2008; Villanueva et al. 2011; Villanueva et al. 2014; Villanueva et al. 2015).  

This study utilised whole-genome sequencing to comprehensively investigate variation 

across thirty-three genes previously implicated in language-related phenotypes in TEL affected 

(n=7) and TLD unaffected (n=10) Islanders.  
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Based on the high degree of relatedness and therefore shared genetics of the Islanders, we 

postulated that a rare (MAF ≤1% in gnomAD AMR) high impact variant may underlie TEL 

affection on RCI. Fifteen rare nonsynonymous variants in eleven genes were identified in the 

sequenced individuals. However, no single variant segregated with TEL status. Interestingly, the 

only variant with a potential pathogenicity prediction was found in a homozygous state in TLD-2 

an unaffected individual. No single pathogenic variant within the language gene regions was 

detected.    

A wider investigation of rare variants (MAF ≤1% in the gnomAD AMR population 

controls) across the entire gene regions (including introns) did not find any evidence of increased 

variant burden in TEL individuals compared to those with TLD (p=0.3558). In fact, the TLD 

group were found to carry a higher number of rare variants, although this was not statistically 

significant. Interestingly, a moderate enrichment of rare variants was observed in the founder-

brother-related individuals. As the sample size is highly limited, this may be artificially inflated 

by the small number of non-founder-brother-related individuals sequenced (n=3). 

In the absence of co-segregating rare variants, we extended our investigation and 

considered all variants observed across the candidate genes (n=33,966). Again, no variant was 

found to fully segregate with affection status. Interestingly, six intronic CNTNAP5 variants were 

found to occur in a homozygous (rs9309831) or heterozygous (rs779979, rs779980, rs7605310, 

rs13402327 and rs2565748) state in all TLD individuals investigated. However, these variants 

were also observed in TLD individuals and genotype analysis showed there was no clear 

haplotype that segregated with TLD affection within the founder-brother-related individuals.  
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Finally, we assess all variants within a gene-based burden analysis. Again, no association 

was found to either TLD status or founder-brother-relatedness. Several genes reached nominal 

significance, potentially suggesting a multi-loci complex genetic signal however the small 

number of non-founder-related individuals may increase statistical bias.  

In conclusion therefore, our results indicate either a single hit variant or a general burden 

of variants within known candidate language genes do not explain the risk of TEL in the RCI 

Islanders. No single variant was found to co-segregate with language or founder-brother-related 

status and no gene showed any evidence of increased burden in relation to TEL.  

Interestingly, the NFXL1 gene, which was identified as a risk-gene within the RCI 

population by Villanueva et al. (2015), did not show association to TEL in the current study. The 

p.Asp150Lys risk variant was not included in the rare variant analyses presented here as it has a 

gnomAD frequency greater than 1%  and, as previously reported (Villanueva et al. 2015), the 

variant does not show complete segregation with TEL status. It should be noted that the cohort of 

islanders sequenced in this paper is much smaller than that genotyped for p.Asp150Lys in the 

Villanueva (2015) paper, which represents a much more complete characterisation of this 

variant. Information regarding the frequency of this variant across control population is now 

more extensive and is estimated at MAF=0.0504 (AMR) and MAF=0.006476 (ALL) clearly 

indicating the variant is more common in people with Latino ancestry. Nonetheless, the previous 

research stands and even with these updated population data, this variant remains enriched 

among Islanders and TEL individuals and, as such, still represents an excellent candidate risk 

variant in the RCI population.  
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The lack of association to the NFXL1 variant in the current study is likely explained by 

the small sample size. Only 3/7 TEL cases carried the NFXL1 variant compared to 3/10 TLD 

controls, by chance fewer than expected. At a genome wide level, the p.Asp150Lys NFXL1 

variant was found to account for 7% of the trait variance seen on RCI (Villanueva et al. 2015), 

suggesting this variant may be a modifier to a dominant model, or play a role in a complex 

susceptibility model. Our data do not contradict this finding but show a need for improved 

sensitivity through increased statistical power.  

Whole-genome sequencing is a useful method for identifying the variants underpinning 

genetic disorders and provides an unprecedented range of genetic information in one test. As 

whole-genome sequencing becomes more common, the major bottleneck is the analysis of the 

huge volume of data generated from a sequencing run and narrowing variants of interest from the 

vast numbers of non-reference variant calls detected in each individual. This means, that even 

with extensive phenotypic and familial information, it can be difficult to narrow the cause of 

disease. One practical approach to thinning the number of potential causative variants is to 

combine the usage of candidate genes already implicated in the disorder, in combination with 

pedigree information to look for segregating variants. In large, complex pedigrees like Robinson 

Crusoe Island, prioritising variants that segregate with affection status can increase power to 

detect causative variants. These methods allow for the identification of ‘low hanging fruit’: rare, 

nonsynonymous variants that segregate with disease and are in genes already implicated in 

language. Whole-genome sequence analysis, particularly in a large and complex family like RCI, 

can be challenging and technically non-trivial, therefore this approach is a sensible first place to 

start.  
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Similar family and genealogy-based methodologies have been successfully applied to 

other related population in which language disorders are common. (Wiszniewski et al. 2013) 

identified an ancestral deletion of exon 3 in the gene TM4SF20 that is present in ~1% of people 

with South East Asian ancestry. They found that this deletion strongly increased the risk of 

language disorders with or without white matter hyperintensity. Similarly, (Kornilov et al. 2016) 

reported the association of SETBP1 with DLD in a Russian population from an isolated village 

where they found a remarkably high occurrence rate of ~30%.  

We have shown that the TEL seen on Robinsons Crusoe Island is not caused by a single 

shared Mendelian mutation in known language candidate genes and have comprehensively tested 

for ‘low hanging fruit’. Founder-brother related individuals may have a subtle ‘risk’ profile from 

a small number of moderate effect variants as part of a complex model however we did not 

detect a robust association with any of the thirty-three language genes tested. Therefore, the 

underlying cause of TEL on RCI is likely due to a Mendelian variant in a novel gene that is yet 

to be associated with language, or alternatively a complex susceptibility model that we lacked 

the power to detect.   
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Tables 

Table 1 shows the numbers of variants found in the language gene regions by whole-genome 

sequencing, if the individual is directly related to the pair of original founder brothers, and 

whether they carry the p.Asp150Lys NFXL1 variant. A) Results for the Typical Language Delay 

(TLD) control group, and B) results for the language disorder affected (TEL) group. C) The 

median number of variants for each level of filtering (Median), and the range across all 17 

individuals.  

  

A
Number of variants identified in: TLD-1 TLD-2 TLD-3 TLD-4 TLD-5 TLD-6 TLD-7 TLD-8 TLD-9 TLD-10

Full regions 13,764 14,124 13,817 16,610 15,433 14,036 13,388 12,902 12,261 13,804
Coding 40 33 45 54 52 33 32 44 34 42

Nonsynonymous variants 15 14 18 20 19 14 10 15 10 17
Rare (≤1%) nonsynonymous variants 1 1 1 1 2 0 1 1 0 0

Founder brother related Y Y Y Y Y Y Y Y N N
NFXL1 p.Asp150Lys carrier 0/1 0/1 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0

B
Number of variants identified in: TEL-1 TEL-2 TEL-3 TEL-4 TEL-5 TEL-6 TEL-7

Full regions 14,320 12,918 12,864 15,761 14,129 14,169 12,492
Coding 35 44 51 47 41 32 37

Nonsynonymous variants 16 14 18 22 16 11 17
Rare (≤1%) nonsynonymous variants 1 1 2 3 2 0 0

Founder brother related Y Y Y Y Y Y N
NFXL1 p.Asp150Lys carrier 0/1 0/1 0/1 0/0 0/0 0/0 0/0

C
Number of variants identified in: Total Median

Full regions 33,968 13,817
Coding 137 41

Nonsynonymous variants 56 16
Rare (≤1%) nonsynonymous variants 15 1

33-52
10-22
0-3

Typical Language Delay Controls

Language Disorder Affected Cases

Range
12,902-16,610
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Table 2 shows prioritised rare, nonsynonymous variants identified in the thirty-three language 

genes in 17 Robinson Crusoe Islanders, 7 with a diagnosis of TEL and 10 unaffected individuals 

(TLD). The table includes the genomic location (chromosome and position) of the variants, the 

gene in which it falls, the resulting coding and amino acid changes, and the transcript and 

corresponding exon. The rsID column indicates the dbSNP identifier, and no record is indicated 

by a full stop. The Pred. lists the combined in silico missense pathogenic prediction score 

(maximum score of 10). gnomAD MAF indicates the sum of minor allele frequencies list in the 

gnomAD database for the Latino (AMR) and combined (ALL) populations. No data, meaning an 

allele has not been detected in the control populations, is indicated by a full stop. Finally, the 

genotype of individual for each variant is indicated as wild-type (0/0), heterozygous (1/0) or 

homozygous (1/1).   
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Table 3 shows the total number of rare variants found in the sequenced Robinson Crusoe 

Islanders across the entire gene region of the thirty-three language genes. A. The total number of 

rare variants per individual. B. The mean number of rare variants per group; TEL compared to 

TLD, and founder-brother-related compared to non-founder-brother-related, and the Students t-

test to test for a statistical difference in means between the two groups.  

 

  

A
Sample TEL-1 TEL-2 TEL-3 TEL-4 TEL-5 TEL-6 TEL-7 Total variants = 4998

No. Rare Variants 445 340 320 732 291 340 266 Total mean variants = 362.32
Founder brother related Yes Yes Yes Yes Yes Yes No Standard deviation = 164.52

Sample TLD-1 TLD-2 TLD3 TLD-4 TLD-5 TLD-6 TLD-7 TLD-8 TLD-9 TLD-10
No. Rare Variants 345 686 293 722 645 400 470 366 406 328

Founder brother related Yes Yes Yes Yes Yes Yes Yes Yes No No

B
390.571 456.786

TLD unaffected mean = 466.1 333.333
0.35575 0.07431Students t-test p=Students t-test p=

TEL affected mean =

TEL Affected

TLD Controls

Founder brother related n=14, unrelated n=3
Founder related mean =

TEL n=7, TLD n=10

Founder unrelated mean =
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Table 4 shows the gene-based association testing results using the SKAT test (RVTESTS) 

collapsed into gene regions. The number of variants tested within each gene, and permuted p 

values for each measure are reported. The greyed highlights represent nominally significant gene 

results.  

  

Gene No. of Variants TEL Founder-Brother Status
ARHGEF39 15 0.730112 0.578505
ATP2C2 664 0.52521 0.203707
AUTS2 2661 0.961538 0.408514
BCL11A 177 0.873362 0.881289
CHD3 41 0.632511 0.573808
CMIP 946 0.680272 0.355643
CNTNAP2 8008 0.979432 0.220699
CNTNAP5 3164 0.668896 0.05785
DCDC2 802 0.453721 0.254134
DOCK4 1251 0.779423 0.228042
DYX1C1 30 0.925255 0.0097
ERC1 1956 0.979432 0.168808
FLNC 49 0.623053 0.456313
FOXP1 1390 0.845309 0.03645
FOXP2 481 0.275482 0.122056
GRIN2A 1733 0.585187 0.266962
GRIN2B 1361 0.207107 0.07865
KAT6A 218 0.983284 0.670584
KIAA0319 347 0.118494 0.0951
MKL2 348 0.965251 0.0343
NDST4 776 0.996016 0.464419
NFXL1 50 0.744039 0.194515
NOP9 18 0.0407 0.286312
RBFOX2 449 0.390168 0.026
ROBO1 3303 0.961538 0.338305
ROBO2 2289 0.904977 0.483285
SEMA6D 139 0.639475 0.733113
SETBP1 325 0.910747 0.008
SETD1A 53 0.88879 0.0424
TM4SF20 80 0.588928 0.253887
TNRC6B 290 0.462535 0.11708
WDR5 179 0.352983 0.3397
ZFHX4 373 0.0565 0.653796

SKAT Association Test Permuted P value



34 
 

Figures (on individual pages) 
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Figure Captions (as a list) 

Figure 1 shows the analysis work flow from whole-genome sequencing variant calls in 17 TEL 

and TLD Robinson Crusoe Islanders. The variant filtering steps for the Rare Mendelian Variant 

Analysis are highlighted in grey (left). Rare variant burden, segregation and gene-based 

association analyses are described in the black boxes (right). 

 

Figure 2 shows the genotype grid for the founder-brother related TEL and TLD individuals 

across the chr2:125,078,104-12,5086,667 region of CNTNAP5. The five prioritised variants from 

the segregation analysis are indicated by an asterisk. The genotype for each variant in the region 

are indicated as wild-type (orange), heterozygous (blue) and homozygous (purple). The genotype 

analysis shows affected individuals do not share a clearly defined single haplotype containing all 

five markers, and it therefore is unlikely to represent a causative region.  
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Supplementary Tables 

Supplementary Table 1 

Chrom Start  End  Gene 

2 124782864 125672863 CNTNAP5 

2 60684329 60780633 BCL11A 

2 228226874 228244022 TM4SF20 

3 71003865 71633140 FOXP1 

3 75986645 77699114 ROBO2 

3 78646388 79817059 ROBO1 

4 115748927 116035032 NDST4 

4 47849258 47916680 NFXL1 

6 24171983 24358280 DCDC2 

6 24544332 24646383 KIAA0319 

7 111366164 111846462 DOCK4 

7 114055052 114333827 FOXP2 

7 128470483 128499328 FLNC 

7 145813453 148118088 CNTNAP2 

7 69063905 70257885 AUTS2 

8 41786997 41909505 KAT6A (MYST3) 

8 77593515 77779521 ZXHF4 

9 137001210 137025094 WDR5 

9 35659341 35665278 ARHGEF39 (C9orf100) 

12 1100404 1605099 ERC1 

12 13714410 14133022 GRIN2B 

14 24769098 24774374 NOP9 (C14orf21) 
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15 48009584 48066420 SEMA6D 

15 55722506 55800432 DYX1C1 (DNAAF4) 

16 14165196 14360630 MKL2 

16 30968615 30995981 SETD1A 

16 81478775 81745367 CMIP 

16 84402133 84497793 ATP2C2 

16 9847265 10276263 GRIN2A 

17 7788123 7816075 CHD3 

18 42260138 42457379 SETBP1 

21 15646120 15673692 ABCC13 

22 36134783 36424585 RBFOX2 

22 40573929 40731812 TNRC6B 

 

 


