
Continuous Debugging of Microservices

Hong Zhu, Ian Bayley
School of Engineering, Computing and Mathematics

Oxford Brookes University
Oxford OX33 1HX, UK

hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Hongbo Wang
School of Computer and Communication Engineering

University of Science and Technology Beijing
Beijing 100083, China

foreverwhb@ustb.edu.cn

Abstract—Debugging is one of the most difficult tasks during
the development of cloud-native applications for the microser-
vices architecture. This paper proposes a continuous debug-
ging facility to support the DevOps continuous development
methodology. It has been implemented and integrated into
the Integrated DevOps Environment CIDE for microservices
written in the agent-oriented programming language CAOPLE.
The paper also reports controlled experiments with the debug
facility. Experiment data show that the overhead is less than
3% of the execution time on average.

Keywords-Software-as-a-Service; Microservices; Cloud na-
tive applications; Integrated DevOps Environment; Debug
facility; Continuous debugging

I. INTRODUCTION

Microservices is a software architectural style in which
a cloud-native application consists of a large number of
services that are distributed over a cluster of computers,
running in parallel, and interacting with each other through
service requests and responses [1]. These services are small
scale, of fine granularity, and each realises one function only.
The instances of a service, called agents in the literature and
hereafter in this paper, may be created or terminated dynam-
ically in response to changes in demand or the failure of
other agents. Systems in the microservices architectural style
can therefore achieve elastic scalability, optimal performance
and fault tolerance [2]. Furthermore, the system can evolve
without interruption to its operation, because instances of
obsolete services can be gradually removed and replaced
with agents of new services. In this way, the microservices
style enables continuous testing (CT), continuous integration
(CI) and continuous deployment (CD), all of which are
crucial to cloud-native applications [3]. For this reason,
they have been widely adopted by industry for cloud-native
applications [4].

However, microservices also pose grave challenges to
software development and maintenance. In particular, when
a vast number of services are running in parallel in a large
cluster of computers, it is notoriously difficult to diagnose
the causes of failures; see, for example, [5]. One approach to
fault localisation is static analysis, which relies on data saved
to files during execution such as log entries and analyse them

after execution. In this paper, however, we focus instead
on dynamic debugging. This is the process of investigating
a piece of software through controlled executions of the
program and focused observations of its dynamic behaviour,
in order to find out the cause of an unexpected behaviour, or
failure, by locating defects in the program code. It is widely
used throughout traditional software development because
of its effectiveness. However, according to Levine, it is “is
totally missing from the toolbox of microservice developers”
[5]. This paper proposes such a debugger facility.

The main contributions of this paper are as follows.
First, we introduce the notion of continuous debugging to

complement the existing continuous development methodol-
ogy and analysed the requirements of debugging microser-
vices on debug tools.

Second, we propose a novel debugging facility that sat-
isfies all the requirements of continuous debugging for
microservices. It consists of tools to trace the execution of a
selected agent(s), to take a state snapshot of the agent(s),
and to control the execution of the agent(s). The debug
facility can be integrated into a software development and
operation environment to support the principle of DevOps.
In particular, it enables programmers to directly debug
microservices running in a cluster environment to realise
the philosophy of “you develop it, you operate it”.

Third, we demonstrate that the proposed debug facility is
feasible by implementing it via modifying the CAVM virtual
machine that runs microservice programs and by integrating
it into the integrated DevOps environment CIDE.

Finally, we conducte controlled experiments to demon-
strate the efficiency of the implementation of the debug
facility. Our experiments show that the overhead can be
less than 3% increase of execution time compared with
an equivalent virtual machine without such a debug facil-
ity. We have also demonstrate that the use of the debug
facility imposes minimal interference in the execution of
the microservices. For the trace operation, the overhead is
less than 5% on average and less than 14% in the worst
case. The time needed to take a state snapshot is only a
few milliseconds, and it is linear in both the number of
variables in the microservices, the total volume of data held

1

in the variables, and the number of messages in the incoming
queue. For most microservices, such debug operations will
only take a few milliseconds.

The rest of this paper is organised as follows. Section
II analyses the requirements for debugging microservices
and introduces the notion of continuous debugging. Section
III presents a continuous debug facility, which has designed
and implemented for Agent-Oriented programming language
CAOPLE and integrated to the Integrated DevOps Environ-
ment CIDE. Section IV reports the experiments carried out
to evaluate the overhead of the debug facility. Section V
concludes the paper with a comparison of related work.

II. DEBUGGING MICROSERVICES

Interactive debugging is a process consisting of a linear
sequence of interactions between a software developer and
a piece of software. The developer issues commands to
control the execution of the program and then observes its
state. It is an integral part of the whole process of software
development and operation. This section introduces the
notion of continuous debugging in order to fit debugging into
the methodology for developing cloud native applications
in microservices architecture. We then analyse the specific
requirements for debugging microservices.

A. Continuous Debugging

The DevOps methodology is the current best industrial
practice for the development and operation of cloud-native
applications with microservices, so it is important for a
debug facility fitting into the DevOps methodology.

A key characteristic of the DevOps methodology is
continuous development, which has implications for both
individual components and the system as a whole. For
components, continuity means that development activities
proceed with minimal delay. For example, as soon as coding
is finished, unit testing must begin, followed immediately by
integration testing, then by deployment of the component
to a stage environment, then user testing and so on. From
this perspective, each component moves through the DevOps
pipeline smoothly and continuously until it is delivered. For
the system as a whole, continuity means that it is constantly
changing and evolving as new components are added in,
and old ones are modified and removed, simultaneously.
System level releases and version updates are replaced by
simultaneous evolutions of its components. While this is
happening, the system must operate continuously without
interruption.

The current theory and practice of continuous develop-
ment consist of four elements: continuous testing, contin-
uous integration, continuous deployment, and continuous
delivery. Debugging is missing from the DevOps process
and pipeline models. Debugging tools are not included in the
suite of pipeline automation toolkits. Here, we define a fifth
element: the notion of continuous debugging. For individual

components, debugging activities should take place as soon
as a failure occurs, whether it is detected by the system
automatically or manually. This could be during coding, but
it could also be just after a failure of unit testing or of
integration testing in a stage environment, and of course,
it should occur immediately after the component fails in a
production environment. For the system as a whole, there
should be no interruption to operation, as debugging should
be applied to components in parallel with the development
and operation activities on other components. For example,
the completion of debugging for a component should trigger
regression testing.

The most fundamental principle of DevOps is to inte-
grate development and operation. To support this principle
means integrating debugging tools into the development
environment as well as the operation environment, and
including it in the automated pipeline of the DevOps process.
The integration should be seemless, in keeping with the
fundamental change that DevOps brings to the ownership
of programs and project [6], as summarised by the slogan
“you develop it, you operate it”.

B. Requirements for Debugging Microservices

In order to perform continuous debugging, the require-
ments are that debugging should be:

1) remote: the developer issues commands from their
workstation to operate a microservice running on a
separate remote machine, the one where the failure
originally occurred. It can often be impossible to set
up an environment that replicates the failure on the
programmer’s own workstation.

2) parallel: it is possible for the developer to interact,
ie issue commands and observe states, simultaneously
with multiple services. This is required because a
failure behaviour normally exhibits itself in the inter-
actions between services, and the cause is normally not
just a single bug in the service under investigation,
but a combination of fault(s) in other services. The
multiple services may even be on different machines,
as the environment is distributed.

3) online: it is possible to enter and exit debug mode
freely, resuming the service’s normal operation once
debugging has finished. Often it is necessary to exam-
ine many services to discover which is faulty and we
must be able to do this without affecting the normal
operation of the service.

4) non-intrusive: it does not require instrumentation code
to be inserted into the program and remain in the
code during normal operation of the program. Such
code would cause a significant overhead on system
performance.

5) isolated: debugging one service does not affect the
functional operation or performance of other microser-
vices, so the impact on the system as a whole is min-

2

imised, which is particularly important in a production
environment.

Clearly, the requirements given above should be sufficient
to support debugging as soon as failure occurs without
affecting the operation of the system as a whole.

C. Weakness of Existing Debug Facilities

All existing modern IDEs integrate a software develop-
ment environment with debugging facilities that typically
include the following functions:

• Setting breakpoints in the code where the execution
will stop, so that the program state can be observed.
The execution then be resumed when observations have
been made.

• Executing the program step-by-step so these observa-
tions can be made after each step. The steps can be of
different granularities: a machine instruction, a high-
level language statement, a method call, etc.

• Inspecting the values of variables after the execution
stops at a breakpoint or after a step.

However, the conventional debugging experience that
these facilities provide does not meet the requirements set
out in subsection II-B. It is not online because execution
must start from the beginning. It is not remote because the
debug tool runs on the same machine as the microservice in
order to control execution. It is not isolated because when
a breakpoint is set, all threads and processes that hit the
breakpoint will be paused.

As far as we know, there is no existing debugging fa-
cility that meets the requirements of continuous debugging
microservices running on a cluster of machines [5]. More
discussions on related works is given in Section V-A.

III. THE PROPOSED DEBUG FACILITY

In this section, we propose a new debug facility for
continuous debugging of microservices. It has been imple-
mented and integrated into the integrated DevOps environ-
ment CIDE [8] for developing microservices written in the
service agent-oriented programming language CAOPLE [7].
We have also designed and implemented a command line
interface, which also accepts scripts, so that the debug facil-
ity can be integrated with other tools in DevOps pipelines.
The examples given in this section are from the current
implementation.

The debug facility consists of three tools, described in the
following three subsections; their implementation is briefly
reported in subsection III-D. Each provides commands that
the user/developer can issue to one or more selected agents
to control their execution or display information about their
state or behaviour. The agents need not be instances of the
same microservice nor on the same machine.

A. Execution Trace

A trace is a sequence of the instructions that an agent
executes in a particular period of time. The user can start
tracing a set of selected agents by using the Start Trace
command, and finish by using the Stop Trace command.
During tracing, for each selected agent, the sequence of
executed instructions is saved to a separate file on the
machine where the agent is running. That recorded trace
can be transmitted to the user’s workstation by using the
Get Trace command. Figure 1 shows an example of trace.

detected by the system automatically or manually. Second,
debugging should be applied to components in parallel with
the development and operation activities on other compo-
nents, and it must not interrupt the whole system’s operation.
There are a few implications if debugging is carried out

continuously. The first is that debugging may be performed
at any phase of the development and operation of a software
component. For example, debugging must take place during
coding, after unit testing when the component fails on a test
case. It may also take place during integration testing, when
a component in the stage environment fails integration test-
ing. Of course, it may also take place during operation when
the component fails in a production environment.
Second, debugging must be integrated into the DevOps

process and as a part of the DevOps pipeline. For example,
the finish of debugging of a component should trigger unit
testing. In the literature of DevOps, debugging is missing
from the DevOps process and pipeline models, and debug-
ging tools are not included in the suite of pipeline automation
toolkits. Since existing debugging tools are insufficient to
support continuous debugging of microservices, we have de-
signed and implemented a continuous debugging facility. It
has been integrated into the integrated DevOps environment
CIDE [7] for developing microservices in the service agent-
oriented programming language CAOPLE [6]. We have also
designed and implemented a command line scriptable com-
mands for the integration of the debugging facility with other
tools in the DevOps pipeline. The facility is presented in the
next section.

III. THE DEBUGGING FACILITY
Our debugging facility consists of three sets of tools,

which are described below.

A. Execution Trace
A trace is a sequence of instructions executed in a partic-

ular period of time. The user can start tracing any selected
agent(s) by using the Start Trace command, and finish by us-
ing the Stop Trace command. During tracing, the sequence of
executed instructions is saved to a file on the machine where
the selected agent is running. The recorded trace can be trans-
ferred to the developer’s workstation by using the Get Trace
command.

Figure 1. An Example of Execution Trace of An Agent

Figure 1 shows an example of traces. Each instruction is
in a readable format and contains the following data: (a) a
timestamp in milliseconds from the start of tracing, (b) the
current value of the program counter (PC), i.e. the address of
the instruction, and (c) the line number in the source code
from which the instruction was generated.

B. State Snapshot
The state of an agent consists of the value of current PC,

the values of its variables, the contents of its stack, and the
messages in the queue to be processed. A snapshot of the state
can be obtained at any time for a selected agent by using the
Get State command. The state, as defined above, is then sent
to the developer’s workstation for viewing and analysis.
Figure 2 shows an example of such a state snapshot. In

this example, the stack is empty and there are eight variables.
Their names, data types and values are shown in a table. The
names and types are those in the high-level programming lan-
guage source code. Values of structured data types such as
arrays or records are represented in JSON format.

Figure 2. An Example of State Snapshot of An agent of PeerB Caste

The messages in the queue can be obtained by using the
Get Message Queue command. This gives an insight into the
interactions between the agents because communications be-
tween microservices is via asynchronous messages, in the
form of service request events and service response events.
Figure 3 shows an example message queue for an agent.

There are two unprocessed messages in the queue. In each
case, the caste name, unique ID and IP address of the agent
that generates the event is recorded together with the body of
the message including the event type and parameters.

Figure 3. An Example of Message Queue of An Agent of Caste PeerB

Figure 1. An Example of Execution Trace

As shown in Figure 1, a trace begins with a header,
containing the agent’s universal unique ID, its caste name
(i.e. the name of the microservice), the IP address where
the agent is running, and the time when the trace started.
Alongside each instruction executed, the trace records in
readable format the time in milliseconds from the start
of tracing, the line number of the source code statement
from which the instruction was generated, and the program
counter (PC) i.e. the address of the instruction.

B. State Snapshot

The execution state of an agent is characterised by the
program counter, values of its variables, the contents of its
stack, and the messages in its queue still to be processed.
The Get State command snapshots the first three of these and
sends them as a single package to the user’s workstation for
viewing and analysis. Figure 2 shows an example of such a
state snapshot. The header is similar to the trace information.
Variables are listed with their names, data types and values;
JSON format is used for structured data types such as arrays
or records.

The message queue can be obtained with the Get Message
Queue command. Each agent has its own message queue be-
cause interactions between agents occur with asynchronous
messaging in the form of service request events and service
response events. Figure 3 shows an example message queue
for an agent. Note that each message contains the caste
name, agent ID, agent IP address, event type and parameters.

3

detected by the system automatically or manually. Second,
debugging should be applied to components in parallel with
the development and operation activities on other compo-
nents, and it must not interrupt the whole system’s operation.
There are a few implications if debugging is carried out

continuously. The first is that debugging may be performed
at any phase of the development and operation of a software
component. For example, debugging must take place during
coding, after unit testing when the component fails on a test
case. It may also take place during integration testing, when
a component in the stage environment fails integration test-
ing. Of course, it may also take place during operation when
the component fails in a production environment.
Second, debugging must be integrated into the DevOps

process and as a part of the DevOps pipeline. For example,
the finish of debugging of a component should trigger unit
testing. In the literature of DevOps, debugging is missing
from the DevOps process and pipeline models, and debug-
ging tools are not included in the suite of pipeline automation
toolkits. Since existing debugging tools are insufficient to
support continuous debugging of microservices, we have de-
signed and implemented a continuous debugging facility. It
has been integrated into the integrated DevOps environment
CIDE [7] for developing microservices in the service agent-
oriented programming language CAOPLE [6]. We have also
designed and implemented a command line scriptable com-
mands for the integration of the debugging facility with other
tools in the DevOps pipeline. The facility is presented in the
next section.

III. THE DEBUGGING FACILITY
Our debugging facility consists of three sets of tools,

which are described below.

A. Execution Trace
A trace is a sequence of instructions executed in a partic-

ular period of time. The user can start tracing any selected
agent(s) by using the Start Trace command, and finish by us-
ing the Stop Trace command. During tracing, the sequence of
executed instructions is saved to a file on the machine where
the selected agent is running. The recorded trace can be trans-
ferred to the developer’s workstation by using the Get Trace
command.

Figure 1. An Example of Execution Trace of An Agent

Figure 1 shows an example of traces. Each instruction is
in a readable format and contains the following data: (a) a
timestamp in milliseconds from the start of tracing, (b) the
current value of the program counter (PC), i.e. the address of
the instruction, and (c) the line number in the source code
from which the instruction was generated.

B. State Snapshot
The state of an agent consists of the value of current PC,

the values of its variables, the contents of its stack, and the
messages in the queue to be processed. A snapshot of the state
can be obtained at any time for a selected agent by using the
Get State command. The state, as defined above, is then sent
to the developer’s workstation for viewing and analysis.
Figure 2 shows an example of such a state snapshot. In

this example, the stack is empty and there are eight variables.
Their names, data types and values are shown in a table. The
names and types are those in the high-level programming lan-
guage source code. Values of structured data types such as
arrays or records are represented in JSON format.

Figure 2. An Example of State Snapshot of An agent of PeerB Caste

The messages in the queue can be obtained by using the
Get Message Queue command. This gives an insight into the
interactions between the agents because communications be-
tween microservices is via asynchronous messages, in the
form of service request events and service response events.
Figure 3 shows an example message queue for an agent.

There are two unprocessed messages in the queue. In each
case, the caste name, unique ID and IP address of the agent
that generates the event is recorded together with the body of
the message including the event type and parameters.

Figure 3. An Example of Message Queue of An Agent of Caste PeerB

Figure 2. An Example of State Snapshot

detected by the system automatically or manually. Second,
debugging should be applied to components in parallel with
the development and operation activities on other compo-
nents, and it must not interrupt the whole system’s operation.
There are a few implications if debugging is carried out

continuously. The first is that debugging may be performed
at any phase of the development and operation of a software
component. For example, debugging must take place during
coding, after unit testing when the component fails on a test
case. It may also take place during integration testing, when
a component in the stage environment fails integration test-
ing. Of course, it may also take place during operation when
the component fails in a production environment.
Second, debugging must be integrated into the DevOps

process and as a part of the DevOps pipeline. For example,
the finish of debugging of a component should trigger unit
testing. In the literature of DevOps, debugging is missing
from the DevOps process and pipeline models, and debug-
ging tools are not included in the suite of pipeline automation
toolkits. Since existing debugging tools are insufficient to
support continuous debugging of microservices, we have de-
signed and implemented a continuous debugging facility. It
has been integrated into the integrated DevOps environment
CIDE [7] for developing microservices in the service agent-
oriented programming language CAOPLE [6]. We have also
designed and implemented a command line scriptable com-
mands for the integration of the debugging facility with other
tools in the DevOps pipeline. The facility is presented in the
next section.

III. THE DEBUGGING FACILITY
Our debugging facility consists of three sets of tools,

which are described below.

A. Execution Trace
A trace is a sequence of instructions executed in a partic-

ular period of time. The user can start tracing any selected
agent(s) by using the Start Trace command, and finish by us-
ing the Stop Trace command. During tracing, the sequence of
executed instructions is saved to a file on the machine where
the selected agent is running. The recorded trace can be trans-
ferred to the developer’s workstation by using the Get Trace
command.

Figure 1. An Example of Execution Trace of An Agent

Figure 1 shows an example of traces. Each instruction is
in a readable format and contains the following data: (a) a
timestamp in milliseconds from the start of tracing, (b) the
current value of the program counter (PC), i.e. the address of
the instruction, and (c) the line number in the source code
from which the instruction was generated.

B. State Snapshot
The state of an agent consists of the value of current PC,

the values of its variables, the contents of its stack, and the
messages in the queue to be processed. A snapshot of the state
can be obtained at any time for a selected agent by using the
Get State command. The state, as defined above, is then sent
to the developer’s workstation for viewing and analysis.
Figure 2 shows an example of such a state snapshot. In

this example, the stack is empty and there are eight variables.
Their names, data types and values are shown in a table. The
names and types are those in the high-level programming lan-
guage source code. Values of structured data types such as
arrays or records are represented in JSON format.

Figure 2. An Example of State Snapshot of An agent of PeerB Caste

The messages in the queue can be obtained by using the
Get Message Queue command. This gives an insight into the
interactions between the agents because communications be-
tween microservices is via asynchronous messages, in the
form of service request events and service response events.
Figure 3 shows an example message queue for an agent.

There are two unprocessed messages in the queue. In each
case, the caste name, unique ID and IP address of the agent
that generates the event is recorded together with the body of
the message including the event type and parameters.

Figure 3. An Example of Message Queue of An Agent of Caste PeerB

Figure 3. An Example of Message Queue Snapshot

Another way to obtain the state of an agent is to set
a checkpoint, so that it saves the state information into a
file when the program hits that specific point. Of course,
multiple checkpoints can be set for one agent, and a check-
point can be set on multiple agents. If an agent hits a
checkpoint multiple times, a sequence of state snapshots will
be recorded in one file. Each file holds the state of one agent.

The command Add Checkpoint adds one or many check-
points to a set of selected agents; its parameter is a sequence
of locations, which are either addresses of instructions in the
object code of the agent or line numbers in its source code.
The command Clear Checkpoint removes checkpoints from
selected agents. Once checkpoints have been set, the Start
Checking and the Stop Checking commands, respectively,
start and stop the checkpointing. The recorded state snap-
shots can be transmitted to the user’s workstation by issuing
the Get Checkpoints command.

Figure 4 shows an example of such a checkpoint record.
We can see that two state snapshots were taken at time
moments 2991 and 3001 for a single checkpoint set at line
9 of the source code and instruction 11 of the object code.
Each record shows the value of variables, contents of the
stack and messages in the queue. Since there is a message in
the queue from an agent of caste Peer at time moment 2991
but the queue is empty at time moment 3001, the message
is processed in between these two time moments.

The state of an agent can also be obtained by setting
checkpoints in the program and starting the state checking,
which means saving the state snapshots into a file when the
program hits a checkpoint. In this way, the states of the agent
on a specific point in the program can be recorded. Of course,
multiple checkpoints can be set for one agent. If the program
hits a checkpoint multiple times, a sequence of state snap-
shots will be recorded in one file. Figure 4 shows an example
of checkpoint records in which there are two state snapshots
made when the instruction 11 is executed at the time 2991
and 3001, respectively. From the data in this checkpoint rec-
ord we can know that when the first time the agent hit the
instruction 11, there is a message from an agent of caste Peer
in the message queue. When it hits the same instruction at
address 11, the message is processed thus disappeared from
the message queue. The cycle of processing this message
took 10 ms.

Figure 4. An Example of Checkpoint Records

The states of different agents are saved in different files.
State checking can be stopped by using the Stop Checking
command. The recorded state snapshots can be transferred to
the developer’s workstation by using the Get Checkpoints
command. Two ways of specifying a check point have been
implemented: the line number in source code and the instruc-
tion address of object code. Setting and removing check-
points can be performed by using the Add Checkpoint and
Clear Checkpoint commands.

C. Execution Control
The execution of a selected agent can be controlled by us-

ing the Pause, Step Forward and Resume command. The
Pause command temporarily halts execution of the selected
agent and does so after the current instruction has completed
to ensure that instructions are atomic. Once execution has
been halted, the Step Forward command makes the agent ex-
ecute one more instruction and halt again. The Resume com-
mand continues normal execution of the agent.
Breakpoints can be set for a selected agent so that when

the execution of the agent hits a breakpoint, it will halt. The
Run to Next Breakpoint command will let the agent to execute
until it hits a breakpoint again. Similar to checkpoints, break-
points can also be set in two ways: the line number in the

source code, or instruction address in object code. Setting and
removing breakpoints can be performed by using the Add
Breakpoint and Clear Breakpoint commands.
Note that the Get State and Get Message Queue com-

mands can be used while the agent is in execution as well as
while execution is paused. For example, by using them before
and after a Step Forward, one can see how an individual in-
struction changes the state of an agent.
The debugging facility has been implemented by modify-

ing and adding functions to both the CAVM virtual machine
and the integrated DevOps environment CIDE [7]. Details of
the implementation will be reported in a separate paper due
to space limitation.

Figure 5. Graphical User Interface of the Debug Facility in CIDE

Figure 5 gives the GUI of the debug facility as a part of
CIDE’s GUI for runtime management of clusters and agents.
The debugging facility can be used through the buttons on the
GUI.

TABLE 1. COMMAND LINE DEBUG INSTRUCTIONS

Command Parameter Meaning
--pause Pause the execution of the agent
--resume Resume the execution of the agent
--step Execute one more instruction
--start_trace Start tracing the agent
--stop_trace Stop tracing the agent
--get_trace Get recorded trace of the agent
--get_state Get the state of the agent
--get_msg Get the agent's messages in queue
--set_ checkpoints Points Set checkpoints to an agent
--clear_checkpoints Remove the agent's checkpoints
--start_check Start to record the agent's state at

checkpoints
--stop_check Stop recording the agent's state at

checkpoints
--get_checkpoints Get recorded states of the agent at

checkpoints
--set_breakpoints Points Set breakpoints to the agent
--clear_breakpoints Remove all breakpoints of the agent
--run_to_breakpoints Execute the agent to the next break-

point
--clear Ip Remove debug data on the machine

Figure 4. An Example of Checkpoint Records

C. Execution Control

The execution of a selected agent can be controlled by
using the Pause, Step Forward and Resume commands. The
Pause command temporarily halts execution of the selected
agents and does so after the current instruction has com-
pleted to ensure that instructions are atomic. Once execution
has been halted, the Step Forward command makes each
selected agent execute one more instruction and halt again.
The Resume command continues the normal executions of
the selected agents.

Breakpoints can also be set for a set of selected agents.
When the execution of an agent hits a breakpoint, it will
halt. The Run to Next Breakpoint command will let each
selected agent execute until it hits a breakpoint again. Like
checkpoints, breakpoints can be specified with either source
code line numbers or object code instruction addresses.
Setting and removing breakpoints can be performed by using
the Add Breakpoint and Clear Breakpoint commands on a
number of selected agents, and each agent can have many
breakpoints. Agents can have different breakpoints even if
they are instances of the same caste.

Note that the Get State and Get Message Queue com-
mands can be used both when the agent is executing and
when it is paused. For example, using them before and after
a Step Forward shows the effect of one individual instruction
on the state of an agent.

D. Implementation of The Debug Facility

The debug facility has been fully implemented by modi-
fying the CAVM virtual machine [7] and adding functions
to receive the commands from users as service requests,
execute the commands and respond with messages returned
to the service requester.

The graphical user interface of the integrated DevOps
environment CIDE [8] has been modified to include a set
of buttons etc. for the user to issue commands to selected
agents as service requests to the virtual machines where the

4

agents are executing; it then receives the messages from the
modified CAVM and display the received data. Therefore,
the debugging facility is integrated into the DevOps environ-
ment CIDE. Details of the implementation will be reported
in a separate paper for reasons of space.

Figure 5 gives the GUI for the debug facility as a part of
CIDE’s runtime management of agents.

The debugging facility can also be invoked using com-
mand line instructions, making it possible to write shell
scripts that integrate with the other monitoring and analysis
tools in a DevOps pipeline. The format of instructions is as
follows:
me− dbg 〈command〉 {agentID@IP, }+[parameters]
The debug commands are listed in Table I.

Table I
COMMAND LINE DEBUG INSTRUCTIONS

Command Parameter Meaning
pause Pause the execution of the agent
resume Resume the execution of the agent
step Execute one more instruction
start trace Start tracing the agent
stop trace Stop tracing the agent
get trace Get recorded trace of the agent
get state Get the state of the agent
get msg Get the agent’s messages in queue
set checkpoints Points Set checkpoints to an agent
clear checkpoints Remove the agent’s checkpoints
start check Start to record the agent’s state at check-

points
stop check Stop recording the agent’s state at check-

points
get checkpoints Get recorded states of the agent at check-

points
set breakpoints Points Set breakpoints to the agent
clear breakpoints Remove all breakpoints of the agent
run to breakpoints Execute the agent to the next breakpoint
clear Ip Address Remove debug data on the machine

The debug facility as implemented above enables debug-
ging activities to be conducted on microservices remotely,
online, and isolated; the microservices are agents executing
in a distributed and parallel fashion. It does not require
instrumentation of the code so it is non-intrusive. All the
requirements of Section II-B are satisfied. The debug facility
is integrated to the DevOps environment and the debugging
commands can be scripted. In this way, it supports the con-
tinuous debugging and the integration principle of DevOps.

IV. EVALUATION

The implementation of the debug facility modifies the vir-
tual machine CAVM, which forms the runtime environment
of CAOPLE programs. Thus, it brings additional runtime
overhead to the performance of the programs. Controlled
experiments have been conducted to evaluate this overhead.
This section reports the findings.

A. Experiment 1

Experiment 1 is designed to answer the following research
question.

• RQ1: In terms of performance, how does the system
with the debug facility compare with the system with-
out?

To answer this question, a benchmark called BM1 of
six programs was designed and coded, and run on the
original CAVM (without debug facility) and the modified
CAVM (with the debug facility). As shown in Table II,
the benchmark combines numerical and text processing with
invocations of library functions, system functions, and file
operations. Each was executed 100 times consecutively and
the average taken.

Table II
PROGRAMS IN BENCHMARK BM1

Program Function Main features
P1 Summation of a list of 400 integers

from 0 to 399
Numerical calculation

P2 Generate 500 random numbers Library function call
P3 Probes and displays the workload

on the computer 100 times
System functions call

P4 Read 200 lines of text from a file
and display them on the screen

File operations, Text pro-
cessing

P5 Take 500 readings of the CPU us-
age and calculate the average

System function calls,
Numerical calculation

P6 Calculate the average of 100 ran-
dom numbers

Library function call,
Numerical calculation

The experiment is repeated on two computer systems: a
desktop computer and a server in a cluster; see Table III.

Table III
THE EXPERIMENT PLATFORM

Specification Desktop PC Server
OS Windows Vista Windows Server 2012 R2
No. of Nodes 1 16
No. of Cores 4 4
Memory Size 8 GB 32GB
Hard Drive Size 300GB 300GB
CPU Intel Core 2 2.67GHz Intel Xeon E3-1230v5 3.41GHz

Table IV shows the average execution time (column Time)
for each benchmark program without the debug facility,
the additional execution time (column Diff) when running
the debug facility and the increase in running time as a
percentage (column Rate).

Table IV
RESULTS OF EXPERIMENT 1

Server Desktop PC
Time (ms) Diff Rate % Time (ms) Diff Rate %

P1 106.02 1.16 1.09 172.67 3.03 1.75
P2 131.01 3.44 2.63 171.12 3.99 2.33
P3 117.14 1.19 1.02 217.79 2.34 1.07
P4 14.6 0.52 3.56 79.44 1.34 1.69
P5 367.48 0.05 0.01 591.99 11.62 1.96
P6 6.18 0.42 6.80 11.28 0.27 2.42

Avg 123.74 1.13 2.52 207.38 3.77 1.87

We can see that the overhead of the debug facility is
negligible. On average, it is 2.52% for the server cluster

5

List	of	nodes	
in	the	cluster

Tick	check	boxes	
to	select	the	
nodes	where	
run	the	agents	
to	be	debugged	
so	that	they	are	
listed	in	the	

Agent	Info	PanelAgent	Info	Panel:	
List	of	agents	
running	on	the	
selected	nodes

Tick	check	
boxes	to	

select	some	
agents	to	
issue	debug	
commands

Click	on	a	bu<on	to	apply	a	debug	
command	to	the	selected	agents

Agent’s	debug	state

Debug	Toolbox

Figure 5. Graphical User Interface of the Debug Facility

and 1.87% for the desktop PC. The nondeterminism due to
OS scheduling and JIC etc. has more effect.

B. Experiment 2

This experiment aims to investigate the impact of debug
operations on the execution speed of the agent. Note that
tracing an agent’s execution will record every instruction
executed by the agent, and thereby increase its execution
time. Since the debug facility only affects the agent being
debugged, the impact will be limited to the agent itself.
For state snapshot operations, the agent’s execution must be
suspended while a state snapshot is carried out to ensure data
integrity. The impact of that state snapshot is determined by
the length of the time for which the agent must be suspended
for it to happen. Therefore, we have the following research
questions.

• RQ2.1: When an agent is running with tracing acti-
vated, how much will its performance downgrade?

• RQ2.2: How long does it take to get an agent’s state
snapshot?

• RQ2.3: How long does it take to get the list of messages
in an agent’s message queue?

The following experiments were designed and conducted
to answer these questions.

1) Experiment 2.1: To answer research question RQ2.1,
the same benchmark BM1 is used first with tracing enabled

and then without. As before, each program in the benchmark
is repeated 100 times and the average is calculated. The
experiment is repeated on the same computer systems as in
Experiment 1. Table V shows the average execution times
without tracing in column Time, the increase in execution
time in column Diff when tracing is switched on, and the
percentage increase in column Rate. The results show that
overhead of tracing is 4.21% for the server and 3.64% for
the desktop PC.

Table V
RESULTS OF EXPERIMENT 2.1

Server Desktop PC
Time (ms) Diff Ratio% Time (ms) Diff Ratio%

P1 107.18 0.61 0.57 175.7 10.29 5.86
P2 134.45 3.04 2.26 175.11 14.21 8.11
P3 118.33 0.93 0.79 220.13 5.22 2.37
P4 15.12 0.99 6.55 80.78 0.05 0.06
P5 367.53 7.07 1.92 603.61 0.23 0.04
P6 6.6 0.87 13.18 11.55 0.62 5.39

Average 4.21 Average 3.64

2) Experiment 2.2: To answer research question RQ2.2, a
new benchmark BM2 was designed, in which each program
is characterised by two parameters: the number of variables
and the data size of each variable. Using BM2, the rela-
tionship between these two factors and the time taken to
snapshot can be studied. When each code sample in BM2
was run, 10 state snapshots were taken, and the average

6

execution time was calculated. Table VI shows the execution
times in column T , and the volumes of data in column V
for various numbers of variables (V ar).

Statistical analysis reveals that the execution time for
taking a state snapshot is linear in both the number of
variables and the volume of data. For example, Figure 6(a)
shows the execution times as the number of variables varies
from 1 to 50 with each variable being a list of 1000 integers.
Figure 6(b) shows the execution times for taking a state
snapshot as the total volume of data varies from 20 KB to
200KB when there are 50 variables.

BM2 was designed, in which each program is characterised
by two parameters: the number of variables and the data size
of each variable. Using BM2, the relationship between these
two factors and the time taken to snapshot can be studied.
When each code sample in BM2 was run, 10 state snapshots
were taken, and the average execution time were calculated.
Table 6 shows the execution times in column T, the volumes
of data in column V for various numbers of variables (Var).
Statistical analysis reveals that the execution time for tak-

ing a state snapshot is linear in both the number of variables
and the volume of data. For example, Figure 6(a) shows the
execution times as the number of variables varies from 1 to
50 with each variable being a list of 1000 integers. Figure 6(b)
shows the execution times for taking a state snapshot as the
total volume of data varies from 20 KB to 200KB when there
are 50 variables.

• Experiment 2.3.

To answer research question RQ2.3, the third benchmark
BM3 was designed, in which each program is characterised
by the length of message queue that the agent will have.
When each program in BM3 was run, the Get Message Queue
operation was performed 10 times and the average execution
time calculated.
The experiment was conducted in two scenarios: (a) Ideal

scenario: when there was no other agents running on the ma-
chine; (b) Workload scenario: when there were a number of
other agents running on the same machine to a nearly satu-
rated workload.
Figure 7 shows the Ideal scenario in which snapshotting

was not interrupted by other agents (i.e. threads and processes)
running on the same machine. The execution time was linear
in the number of messages in the queue. Figure 8 shows the
distribution of execution times in the workload scenario,
where the execution time was affected by non-determinism
caused by interruptions from other threads and processes.
However, as shown in Figure 8 that statistically the same
linear pattern is observed. Note that the time needed to
snapshot fewer than 1000 messages is less than 1 millisecond.

C. Conclusions of the Experiments
From the experimental data, we can confidently draw the fol-
lowing conclusions to answer the research questions.

(a) Time (ms) to take a state snapshot for x variables (x=1..50),

where each variable is a list of 1000 integers.

(b) Time (ms) to take a state snapshot of 50 variables, where the volume of

data in each snapshot varies from 20 KB to 200KB.
Figure 6. Analysis of The Result of Experiment 2.2

Figure 7. Time to snapshot a message queue in the Ideal situation

y = 0.1434x
R² = 0.8309

0

2

4

6

8

0 5 10 15 20 25 30 35 40 45 50

y = 0.0279x + 1.0616
R² = 0.916

0
1
2
3
4
5
6
7

0 50 100 150 200

y = 0.0145x - 15.643
R² = 0.981

0

20

40

60

80

100

120

1000 2000 3000 4000 5000 6000 7000 8000

Time (ms)

y = 0.0141x + 5.2643
R² = 0.2043

0

50

100

150

200

250

0 2000 4000 6000 8000

Time (ms)

TABLE 6. SUMMARY OF THE RESULTS OF EXPERIMENT 2.2

V T V T V T V T V T V T V T V T V T V T V T
326 0 1554 1 3090 0 4630 0 6170 0 7710 3 9250 1 10790 1 12330 0 13870 1 15.41 2
726 1 3554 1 7090 0 10630 1 14170 0 17710 3 21250 1 24790 1 28330 1 31870 5 35.41 1
1126 4 5554 1 11090 1 16630 2 22170 1 27710 1 33250 2 38790 1 44330 2 49870 2 55.41 3
1526 0 7554 0 15090 1 22630 1 30170 1 37710 2 45250 3 52790 3 60330 2 67870 5 75.41 3
1926 1 9554 1 19090 1 28630 1 38170 2 47710 2 57250 3 66790 3 76330 35 85870 3 95.41 4
2326 1 11554 1 23090 2 34630 18 46170 2 57710 2 69250 3 80790 4 92330 3 103870 5 115.41 4
2726 1 13554 1 27090 1 40630 2 54170 2 67710 4 81250 3 94790 5 108330 6 121870 6 135.41 5
3126 0 15554 1 31090 3 46630 2 62170 4 77710 3 93250 3 108790 9 124330 4 139870 6 155.41 6
3526 3 17554 3 35090 1 52630 2 70170 4 87710 3 105250 4 122790 4 140330 6 157870 6 175.41 6
3928 0 19560 1 39101 2 58646 2 78191 3 97736 4 117281 6 136826 6 156371 4 175916 7 195.461 6

Var	=	31 Var	=	36 Var	=	41 Var	=	46 Var	=	51Var=2 Var=6 Var	=11 Var	=	16 Var	=	21 Var	=	26

(a) Time (ms) to take a state snapshot for x variables (x=1..50), where each variable
is a list of 1000 integers.

BM2 was designed, in which each program is characterised
by two parameters: the number of variables and the data size
of each variable. Using BM2, the relationship between these
two factors and the time taken to snapshot can be studied.
When each code sample in BM2 was run, 10 state snapshots
were taken, and the average execution time were calculated.
Table 6 shows the execution times in column T, the volumes
of data in column V for various numbers of variables (Var).
Statistical analysis reveals that the execution time for tak-

ing a state snapshot is linear in both the number of variables
and the volume of data. For example, Figure 6(a) shows the
execution times as the number of variables varies from 1 to
50 with each variable being a list of 1000 integers. Figure 6(b)
shows the execution times for taking a state snapshot as the
total volume of data varies from 20 KB to 200KB when there
are 50 variables.

• Experiment 2.3.

To answer research question RQ2.3, the third benchmark
BM3 was designed, in which each program is characterised
by the length of message queue that the agent will have.
When each program in BM3 was run, the Get Message Queue
operation was performed 10 times and the average execution
time calculated.
The experiment was conducted in two scenarios: (a) Ideal

scenario: when there was no other agents running on the ma-
chine; (b) Workload scenario: when there were a number of
other agents running on the same machine to a nearly satu-
rated workload.
Figure 7 shows the Ideal scenario in which snapshotting

was not interrupted by other agents (i.e. threads and processes)
running on the same machine. The execution time was linear
in the number of messages in the queue. Figure 8 shows the
distribution of execution times in the workload scenario,
where the execution time was affected by non-determinism
caused by interruptions from other threads and processes.
However, as shown in Figure 8 that statistically the same
linear pattern is observed. Note that the time needed to
snapshot fewer than 1000 messages is less than 1 millisecond.

C. Conclusions of the Experiments
From the experimental data, we can confidently draw the fol-
lowing conclusions to answer the research questions.

(a) Time (ms) to take a state snapshot for x variables (x=1..50),

where each variable is a list of 1000 integers.

(b) Time (ms) to take a state snapshot of 50 variables, where the volume of

data in each snapshot varies from 20 KB to 200KB.
Figure 6. Analysis of The Result of Experiment 2.2

Figure 7. Time to snapshot a message queue in the Ideal situation

y = 0.1434x
R² = 0.8309

0

2

4

6

8

0 5 10 15 20 25 30 35 40 45 50

y = 0.0279x + 1.0616
R² = 0.916

0
1
2
3
4
5
6
7

0 50 100 150 200

y = 0.0145x - 15.643
R² = 0.981

0

20

40

60

80

100

120

1000 2000 3000 4000 5000 6000 7000 8000

Time (ms)

y = 0.0141x + 5.2643
R² = 0.2043

0

50

100

150

200

250

0 2000 4000 6000 8000

Time (ms)

TABLE 6. SUMMARY OF THE RESULTS OF EXPERIMENT 2.2

V T V T V T V T V T V T V T V T V T V T V T
326 0 1554 1 3090 0 4630 0 6170 0 7710 3 9250 1 10790 1 12330 0 13870 1 15.41 2
726 1 3554 1 7090 0 10630 1 14170 0 17710 3 21250 1 24790 1 28330 1 31870 5 35.41 1
1126 4 5554 1 11090 1 16630 2 22170 1 27710 1 33250 2 38790 1 44330 2 49870 2 55.41 3
1526 0 7554 0 15090 1 22630 1 30170 1 37710 2 45250 3 52790 3 60330 2 67870 5 75.41 3
1926 1 9554 1 19090 1 28630 1 38170 2 47710 2 57250 3 66790 3 76330 35 85870 3 95.41 4
2326 1 11554 1 23090 2 34630 18 46170 2 57710 2 69250 3 80790 4 92330 3 103870 5 115.41 4
2726 1 13554 1 27090 1 40630 2 54170 2 67710 4 81250 3 94790 5 108330 6 121870 6 135.41 5
3126 0 15554 1 31090 3 46630 2 62170 4 77710 3 93250 3 108790 9 124330 4 139870 6 155.41 6
3526 3 17554 3 35090 1 52630 2 70170 4 87710 3 105250 4 122790 4 140330 6 157870 6 175.41 6
3928 0 19560 1 39101 2 58646 2 78191 3 97736 4 117281 6 136826 6 156371 4 175916 7 195.461 6

Var	=	31 Var	=	36 Var	=	41 Var	=	46 Var	=	51Var=2 Var=6 Var	=11 Var	=	16 Var	=	21 Var	=	26

(b) Time (ms) to take a state snapshot of 50 variables, where the volume of data in
each snapshot varies from 20 KB to 200KB.

Figure 6. Analysis of The Result of Experiment 2.2

3) Experiment 2.3: To answer research question RQ2.3, a
third benchmark BM3 was designed, in which each program
is characterised by the length of message queue that the
agent will have. When a program in BM3 was run, the Get
Message Queue operation was performed 10 times and the
average execution time calculated.

The experiment was conducted in two scenarios: an ideal
scenario in which there were no other agents running on the
machine and a non-ideal workload scenario in which there
were a number of other agents running on the same machine
at a nearly saturated workload.

Figure 7(a) and (b) show the distributions of the times
taken to take a snapshot of the message queues in the
two scenarios. In the ideal scenario, snapshotting was not
interrupted by other agents (i.e. threads and processes)
running on the same machine. The execution time was linear
in the number of messages in the queue. In the workload
scenario, the time to snapshot was affected in this way but
statistically the same linear increase pattern can be observed.

BM2 was designed, in which each program is characterised
by two parameters: the number of variables and the data size
of each variable. Using BM2, the relationship between these
two factors and the time taken to snapshot can be studied.
When each code sample in BM2 was run, 10 state snapshots
were taken, and the average execution time were calculated.
Table 6 shows the execution times in column T, the volumes
of data in column V for various numbers of variables (Var).
Statistical analysis reveals that the execution time for tak-

ing a state snapshot is linear in both the number of variables
and the volume of data. For example, Figure 6(a) shows the
execution times as the number of variables varies from 1 to
50 with each variable being a list of 1000 integers. Figure 6(b)
shows the execution times for taking a state snapshot as the
total volume of data varies from 20 KB to 200KB when there
are 50 variables.

• Experiment 2.3.

To answer research question RQ2.3, the third benchmark
BM3 was designed, in which each program is characterised
by the length of message queue that the agent will have.
When each program in BM3 was run, the Get Message Queue
operation was performed 10 times and the average execution
time calculated.
The experiment was conducted in two scenarios: (a) Ideal

scenario: when there was no other agents running on the ma-
chine; (b) Workload scenario: when there were a number of
other agents running on the same machine to a nearly satu-
rated workload.
Figure 7 shows the Ideal scenario in which snapshotting

was not interrupted by other agents (i.e. threads and processes)
running on the same machine. The execution time was linear
in the number of messages in the queue. Figure 8 shows the
distribution of execution times in the workload scenario,
where the execution time was affected by non-determinism
caused by interruptions from other threads and processes.
However, as shown in Figure 8 that statistically the same
linear pattern is observed. Note that the time needed to
snapshot fewer than 1000 messages is less than 1 millisecond.

C. Conclusions of the Experiments
From the experimental data, we can confidently draw the fol-
lowing conclusions to answer the research questions.

(a) Time (ms) to take a state snapshot for x variables (x=1..50),

where each variable is a list of 1000 integers.

(b) Time (ms) to take a state snapshot of 50 variables, where the volume of

data in each snapshot varies from 20 KB to 200KB.
Figure 6. Analysis of The Result of Experiment 2.2

Figure 7. Time to snapshot a message queue in the Ideal situation

y = 0.1434x
R² = 0.8309

0

2

4

6

8

0 5 10 15 20 25 30 35 40 45 50

y = 0.0279x + 1.0616
R² = 0.916

0
1
2
3
4
5
6
7

0 50 100 150 200

y = 0.0145x - 15.643
R² = 0.981

0

20

40

60

80

100

120

1000 2000 3000 4000 5000 6000 7000 8000

Time (ms)

y = 0.0141x + 5.2643
R² = 0.2043

0

50

100

150

200

250

0 2000 4000 6000 8000

Time (ms)

TABLE 6. SUMMARY OF THE RESULTS OF EXPERIMENT 2.2

V T V T V T V T V T V T V T V T V T V T V T
326 0 1554 1 3090 0 4630 0 6170 0 7710 3 9250 1 10790 1 12330 0 13870 1 15.41 2
726 1 3554 1 7090 0 10630 1 14170 0 17710 3 21250 1 24790 1 28330 1 31870 5 35.41 1
1126 4 5554 1 11090 1 16630 2 22170 1 27710 1 33250 2 38790 1 44330 2 49870 2 55.41 3
1526 0 7554 0 15090 1 22630 1 30170 1 37710 2 45250 3 52790 3 60330 2 67870 5 75.41 3
1926 1 9554 1 19090 1 28630 1 38170 2 47710 2 57250 3 66790 3 76330 35 85870 3 95.41 4
2326 1 11554 1 23090 2 34630 18 46170 2 57710 2 69250 3 80790 4 92330 3 103870 5 115.41 4
2726 1 13554 1 27090 1 40630 2 54170 2 67710 4 81250 3 94790 5 108330 6 121870 6 135.41 5
3126 0 15554 1 31090 3 46630 2 62170 4 77710 3 93250 3 108790 9 124330 4 139870 6 155.41 6
3526 3 17554 3 35090 1 52630 2 70170 4 87710 3 105250 4 122790 4 140330 6 157870 6 175.41 6
3928 0 19560 1 39101 2 58646 2 78191 3 97736 4 117281 6 136826 6 156371 4 175916 7 195.461 6

Var	=	31 Var	=	36 Var	=	41 Var	=	46 Var	=	51Var=2 Var=6 Var	=11 Var	=	16 Var	=	21 Var	=	26

(a) In the ideal scenario

BM2 was designed, in which each program is characterised
by two parameters: the number of variables and the data size
of each variable. Using BM2, the relationship between these
two factors and the time taken to snapshot can be studied.
When each code sample in BM2 was run, 10 state snapshots
were taken, and the average execution time were calculated.
Table 6 shows the execution times in column T, the volumes
of data in column V for various numbers of variables (Var).
Statistical analysis reveals that the execution time for tak-

ing a state snapshot is linear in both the number of variables
and the volume of data. For example, Figure 6(a) shows the
execution times as the number of variables varies from 1 to
50 with each variable being a list of 1000 integers. Figure 6(b)
shows the execution times for taking a state snapshot as the
total volume of data varies from 20 KB to 200KB when there
are 50 variables.

• Experiment 2.3.

To answer research question RQ2.3, the third benchmark
BM3 was designed, in which each program is characterised
by the length of message queue that the agent will have.
When each program in BM3 was run, the Get Message Queue
operation was performed 10 times and the average execution
time calculated.
The experiment was conducted in two scenarios: (a) Ideal

scenario: when there was no other agents running on the ma-
chine; (b) Workload scenario: when there were a number of
other agents running on the same machine to a nearly satu-
rated workload.
Figure 7 shows the Ideal scenario in which snapshotting

was not interrupted by other agents (i.e. threads and processes)
running on the same machine. The execution time was linear
in the number of messages in the queue. Figure 8 shows the
distribution of execution times in the workload scenario,
where the execution time was affected by non-determinism
caused by interruptions from other threads and processes.
However, as shown in Figure 8 that statistically the same
linear pattern is observed. Note that the time needed to
snapshot fewer than 1000 messages is less than 1 millisecond.

C. Conclusions of the Experiments
From the experimental data, we can confidently draw the fol-
lowing conclusions to answer the research questions.

(a) Time (ms) to take a state snapshot for x variables (x=1..50),

where each variable is a list of 1000 integers.

(b) Time (ms) to take a state snapshot of 50 variables, where the volume of

data in each snapshot varies from 20 KB to 200KB.
Figure 6. Analysis of The Result of Experiment 2.2

Figure 7. Time to snapshot a message queue in the Ideal situation

y = 0.1434x
R² = 0.8309

0

2

4

6

8

0 5 10 15 20 25 30 35 40 45 50

y = 0.0279x + 1.0616
R² = 0.916

0
1
2
3
4
5
6
7

0 50 100 150 200

y = 0.0145x - 15.643
R² = 0.981

0

20

40

60

80

100

120

1000 2000 3000 4000 5000 6000 7000 8000

Time (ms)

y = 0.0141x + 5.2643
R² = 0.2043

0

50

100

150

200

250

0 2000 4000 6000 8000

Time (ms)

TABLE 6. SUMMARY OF THE RESULTS OF EXPERIMENT 2.2

V T V T V T V T V T V T V T V T V T V T V T
326 0 1554 1 3090 0 4630 0 6170 0 7710 3 9250 1 10790 1 12330 0 13870 1 15.41 2
726 1 3554 1 7090 0 10630 1 14170 0 17710 3 21250 1 24790 1 28330 1 31870 5 35.41 1
1126 4 5554 1 11090 1 16630 2 22170 1 27710 1 33250 2 38790 1 44330 2 49870 2 55.41 3
1526 0 7554 0 15090 1 22630 1 30170 1 37710 2 45250 3 52790 3 60330 2 67870 5 75.41 3
1926 1 9554 1 19090 1 28630 1 38170 2 47710 2 57250 3 66790 3 76330 35 85870 3 95.41 4
2326 1 11554 1 23090 2 34630 18 46170 2 57710 2 69250 3 80790 4 92330 3 103870 5 115.41 4
2726 1 13554 1 27090 1 40630 2 54170 2 67710 4 81250 3 94790 5 108330 6 121870 6 135.41 5
3126 0 15554 1 31090 3 46630 2 62170 4 77710 3 93250 3 108790 9 124330 4 139870 6 155.41 6
3526 3 17554 3 35090 1 52630 2 70170 4 87710 3 105250 4 122790 4 140330 6 157870 6 175.41 6
3928 0 19560 1 39101 2 58646 2 78191 3 97736 4 117281 6 136826 6 156371 4 175916 7 195.461 6

Var	=	31 Var	=	36 Var	=	41 Var	=	46 Var	=	51Var=2 Var=6 Var	=11 Var	=	16 Var	=	21 Var	=	26

(b) In the workload scenario

Figure 7. Times to snapshot a message queue

C. Conclusions of the Experiments

From the experimental data, we can draw the following
conclusions.

• The overhead of the debug facility is less than 3% on
average, so it should not be noticeable to the user.

• The overhead of the trace function is less than 5%
on average. In the worst case, it was 13.18% but
this was as a replacement for traditional step-by-step
interactive debugging so the increase in execution time
is acceptable.

• The overhead of taking a snapshot of an agent’s state is
negligible. Even if there are 50 variables each holding
1000 integers (200KB) the time taken is only a few
milliseconds (6 ms). The execution time is linear in
both the number of variables and the total size of the
data.

• The execution time to take a snapshot of the message
queue is linear in the number of messages in the queue
in the ideal scenario when no other concurrent thread
or process interrupts the snapshot operation. In a heavy
workload scenario, when a snapshot can be interrupted,
it is still linear in the number of messages in the queue,
statistically speaking.

Therefore, the overhead of the debug facility as a whole is
acceptable.

V. CONCLUSION

A. Related Work

Debug facilities are an integral part of modern integrated
software development environments (IDEs) like Eclipse,
NetBeans, IntelliJ, XCode, Visual Studio, etc. They provide

7

Table VI
RESULTS OF EXPERIMENT 2.2

BM2 was designed, in which each program is characterised
by two parameters: the number of variables and the data size
of each variable. Using BM2, the relationship between these
two factors and the time taken to snapshot can be studied.
When each code sample in BM2 was run, 10 state snapshots
were taken, and the average execution time were calculated.
Table 6 shows the execution times in column T, the volumes
of data in column V for various numbers of variables (Var).
Statistical analysis reveals that the execution time for tak-

ing a state snapshot is linear in both the number of variables
and the volume of data. For example, Figure 6(a) shows the
execution times as the number of variables varies from 1 to
50 with each variable being a list of 1000 integers. Figure 6(b)
shows the execution times for taking a state snapshot as the
total volume of data varies from 20 KB to 200KB when there
are 50 variables.

• Experiment 2.3.

To answer research question RQ2.3, the third benchmark
BM3 was designed, in which each program is characterised
by the length of message queue that the agent will have.
When each program in BM3 was run, the Get Message Queue
operation was performed 10 times and the average execution
time calculated.
The experiment was conducted in two scenarios: (a) Ideal

scenario: when there was no other agents running on the ma-
chine; (b) Workload scenario: when there were a number of
other agents running on the same machine to a nearly satu-
rated workload.
Figure 7 shows the Ideal scenario in which snapshotting

was not interrupted by other agents (i.e. threads and processes)
running on the same machine. The execution time was linear
in the number of messages in the queue. Figure 8 shows the
distribution of execution times in the workload scenario,
where the execution time was affected by non-determinism
caused by interruptions from other threads and processes.
However, as shown in Figure 8 that statistically the same
linear pattern is observed. Note that the time needed to
snapshot fewer than 1000 messages is less than 1 millisecond.

C. Conclusions of the Experiments
From the experimental data, we can confidently draw the fol-
lowing conclusions to answer the research questions.

(a) Time (ms) to take a state snapshot for x variables (x=1..50),

where each variable is a list of 1000 integers.

(b) Time (ms) to take a state snapshot of 50 variables, where the volume of

data in each snapshot varies from 20 KB to 200KB.
Figure 6. Analysis of The Result of Experiment 2.2

Figure 7. Time to snapshot a message queue in the Ideal situation

y = 0.1434x
R² = 0.8309

0

2

4

6

8

0 5 10 15 20 25 30 35 40 45 50

y = 0.0279x + 1.0616
R² = 0.916

0
1
2
3
4
5
6
7

0 50 100 150 200

y = 0.0145x - 15.643
R² = 0.981

0

20

40

60

80

100

120

1000 2000 3000 4000 5000 6000 7000 8000

Time (ms)

y = 0.0141x + 5.2643
R² = 0.2043

0

50

100

150

200

250

0 2000 4000 6000 8000

Time (ms)

TABLE 6. SUMMARY OF THE RESULTS OF EXPERIMENT 2.2

V T V T V T V T V T V T V T V T V T V T V T
326 0 1554 1 3090 0 4630 0 6170 0 7710 3 9250 1 10790 1 12330 0 13870 1 15.41 2
726 1 3554 1 7090 0 10630 1 14170 0 17710 3 21250 1 24790 1 28330 1 31870 5 35.41 1
1126 4 5554 1 11090 1 16630 2 22170 1 27710 1 33250 2 38790 1 44330 2 49870 2 55.41 3
1526 0 7554 0 15090 1 22630 1 30170 1 37710 2 45250 3 52790 3 60330 2 67870 5 75.41 3
1926 1 9554 1 19090 1 28630 1 38170 2 47710 2 57250 3 66790 3 76330 35 85870 3 95.41 4
2326 1 11554 1 23090 2 34630 18 46170 2 57710 2 69250 3 80790 4 92330 3 103870 5 115.41 4
2726 1 13554 1 27090 1 40630 2 54170 2 67710 4 81250 3 94790 5 108330 6 121870 6 135.41 5
3126 0 15554 1 31090 3 46630 2 62170 4 77710 3 93250 3 108790 9 124330 4 139870 6 155.41 6
3526 3 17554 3 35090 1 52630 2 70170 4 87710 3 105250 4 122790 4 140330 6 157870 6 175.41 6
3928 0 19560 1 39101 2 58646 2 78191 3 97736 4 117281 6 136826 6 156371 4 175916 7 195.461 6

Var	=	31 Var	=	36 Var	=	41 Var	=	46 Var	=	51Var=2 Var=6 Var	=11 Var	=	16 Var	=	21 Var	=	26

the functions for setting breakpoints, stepping through the
program and inspecting the memory state. A typical example
is the GNU Project Debugger GBD, designed for offline
and local debugging. Debug facilities and tools have also
been developed for various programming languages, such as
dlv for Go, ptvsd for Python, etc. As discussed in Section
II-C, they do not meet the all requirements of debugging
microservices, nor do they support continuous debugging as
a part of the DevOps pipeline. As Levine pointed out, the
debugger “is totally missing from the toolbox of microservice
developers” [5].

The closest near matches are works on debugging the
programs running on supercomputers [9], the BigDebugger
for debugging MapReduce applications for Big Data analysis
[11], and two more recent developments: Cloud Debugger
for Google’s Cloud Platform for microservices [14] and
Squash [17]. They are discussed below.

To enable the debugging of parallel programs running on
supercomputer architectures, Jin et al. [9] developed a code
library for launching a debug facility simultaneously on the
nodes in a supercomputer from the front-end, and sending
data collected back to the developer’s workstation. The main
function of the library code is the communication between
the front-end and back-end in supercomputer systems. A
similar work is reported in [10] addressing the same prob-
lem.

In the context of Big Data analysis applications, Gulzar et
al. [11] developed a debug facility called BigDebug to extend
the Spark system. It provides a set of debug primitives to
enable debugging of the MapReduce type of computation on
Hadoop clusters. Their debug facility includes the following
functions.

• Simulated breakpoint, which enables the user to inspect
intermediate results at a given ”breakpoint” and then
resume the execution. This creates the illusion of a
breakpoint, even though the program is still running
on the cloud in the background.

• Guarded watchpoint, which enables the user to query a
subset of data matching a given guard condition.

• Data trace, which enables the user to trace forward and

backward through the processing of an individual data
record to identify the origin of the final or intermediate
output.

• Crash culprit and remediation, which sends all required
information to the driver when the crash occurs so that
the user can determine the culprit and take actions to
fix the code and then carry on the computation.

Compared to our debug facility, the overhead of BigDebug
is much higher: up to 24% for recording tracing, 19% for
crash monitoring, and 9% for watchpoint [11]. Moreover,
BigDebug is only applicable to the MapReduce type of
dataflow computations. It is not applicable for microservices.

Tracing has been widely used in practice for debug-
ging concurrent systems and software running on parallel
hardware architectures such as multiple core systems [12].
Google’s Dapper provides context-based tracing in particu-
lar. It relies on the homogeneous infrastructure of common
RPC libraries to minimise the instrumentation burden. Its
data model (call graph) and architecture has become the de
facto standard for trace collection. Zipkin, created at Twitter,
is an open source clone of Dapper. Zipkin and its derivatives
including Amonon’s X-Ray are in widespread use. However,
as Alvaro [13] pointed out, despite the fact that distributed
systems are a mature research area in academia and are
ubiquitous in industry, the art of debugging distributed
systems is still in its infancy.

A recent development in industry is Google’s Cloud De-
bugger [14]. It has the features of remote online debugging,
which is called real-time debugging in [14]. It provides two
debugging tools: snapshot and logpoints. The former gets
the values of selected variables when the execution of an
instance hits a snapshot location in the code, and sends the
value to the user’s workstation. The latter generates a log
entry in the target log system when the execution of an
instance hits a logpoint location in the code. Both of them
are similar to our checkpointing functions, but there are at
least three important differences: Cloud Debugger does not
collect information about message queues, which is vital
for debugging microservices. Its snapshots and logpoints are
applied to ”all instances of the app”, rather than just the

8

selected instances, as in our approaches. Its snapshots require
the user to specify which variables are required, whereas we
obtain values of all valid variables, including dynamically-
created variables.

Looking more closely at the last of these differences,
although selecting just some of variables can reduce the
amount of data transferred to the user’s workstation, this
is offset by the longer computation time required to set
the snapshot, which takes about 40 seconds [14]. In our
approach, the equivalent task of setting a checkpoint can
be done instantly. Moreover, the user may not be able
to know the names of variables if they do not have the
source code and even if they did, they would not be able
to specify dynamically generated variables and compiler-
generated internal variables. Finally, user-specified variables
may not be in scope for some locations of the program.

It is worth noting, moreover, that Cloud Debugger does
not have any tool for control the executions of the application
under debug. Finally, in order to reduce the overhead, Cloud
Debugger restricts the time period for which a snapshot or
logpoint is effective and enables the user to set conditions for
the functions. In spite of this, Cloud Debugger’s overhead
is still higher than ours. It causes an additional latency of
each service request about 10ms on average [14]. With less
than 10ms, our debugger can get the values of more than 50
variables and 200KB of data (equivalent to 50,000 integers);
see experiment data in Figure 6 of Section IV-B2.

Squash is an open source project of solo.io that provides
an interface between an existing IDE and the software
running on remote machine for testing microservices using
existing debug facilities like dlv for Go, ptvsd for Python
and GNU Project Debugger gdb [17], [18]. Currently, it sup-
ports VS Code, Intellij and Eclipse IDEs for microservices
running on Kubernetes and OpenShift platforms and written
in programming languages (microservices frameworks) Go,
Java, JavaScripts (Nodejs) and Python [18]. It completely
relies on existing debuggers to perform debugging activities,
but provides no new debugging facilities. Therefore, it only
meets some of the requirements of debugging microservices
that we recognised in Section II-B; for example, it does not
enable online debugging microservices.

In the wider context of site reliability engineering, the
current trend in industry is away from monitoring to towards
observability engineering (or observability for short), which
consists of four pillars: monitoring, alert and visualisation,
distributed system tracing and log aggregation and analysis
[20]. It gives better support for debugging than monitoring
does by providing more information, especially the “highly
granular insights into the behaviour of systems”. However,
as Shridharan pointed out [15], observability is not debug-
ging, which is characterised as “an iterative process which
involves introspection of the various observations and facts
reported by the system, making the right deductions and
testing whether the theory holds water”. Thus, observability

is not sufficient for debugging microservices.
Both observability techniques and debug facilities pro-

vide a means of observations for microservices. However,
there are subtle differences. For example, considering the
observability as a system quality attribute like usability,
efficiency, maintainability, testability, etc., Baron Schwartz
defines observability as ”a measure of how well internal
states of a system can be inferred from knowledge of its
external outputs” [16]. Indeed, existing observability tech-
niques treat microservices as a black box and only observe
external features. In contrast, when debugging, one does not
only observes a system’s external outputs, but perhaps more
importantly, its internal states too. Moreover, controllability
as a mathematical dual of observability in control theory
is equally important for debugging but completely missing
in the observability tool box. Many debugging facilities,
including ours, not only contain tools for observation on
system’s behaviour and state, but also tools to control the
execution of the system.

There are many tools available for each of the four pillars
of observability. These tools are increasingly integrated
together, as with Google Cloud operations suite and its
predecessor Stackdriver [19], and they help to diagnose
failure and their causes. For example, through telemetry
visualisation and alert tools, one can recognise whether a
failure occurred in the system, and predict whether a failure
could occur or is in progress. Through message tracing
and log aggregation and analysis tools, one can identify
which machine and which microservice caused a problem.
Observability tools are widely used in industry to locate bugs
in a microservice system [21], and are becoming an active
research subject. For example, Shang et al. [22] proposed a
data mining approach to the analysis of log files to identify
failures of deployment of big data analysis applications
to Hadoop clusters. Tong et al. [23] also employed data
mining techniques to analyse log files of cloud platforms
to pinpoint bug-induced software failures. They can identify
which processes cause the system failure, but not where
exactly this happened in the code. It is highly desirable to
integrate debugging tools into the microservice development
toolbox. For example, Google Cloud operations suite has
recently included the debugging tool Cloud Debugger [19].

B. Future Work

It is interesting to study the effectiveness of the proposed
debug facility in practice, for example, through empirical
studies with professional software developers and using a
benchmark like DbgBench [24]. It is also worth noting that
in recent years there has been a rapid growth in research
on automated debugging; see [25] for a recent survey of
research on the topic. The execution traces (also called
execution profile in the literature) are the main input to such
automated debugging algorithms. It may be interesting to
investigate how to link our trace tool to such automated

9

debugging tools. The implementation of our debug facility
is through modification of the language’s virtual machine
(i.e. the runtime environment). The approach should be
applicable for other languages that are implemented by using
language virtual machines such as Java, Python, etc. It will
be interesting to explore how to implement a similar debug
facility for Java and Python.

REFERENCES

[1] J. Lewis and M. Fowler, Microservices, Online at http://
martinfowler.com/articles/microservices.html, 25 Mar. 2014.
Last access:27 Jun.2020.

[2] S. Newman, Building Microservices: Designing Fine-Grained
Systems, OReilly, Feb. 2015.

[3] L. Krause, Microservices: Patterns and Applications, Mi-
croservicesbook.io, April 2015.

[4] H. Zhu and I. Bayley, If Docker Is The Answer, What Is The
Question? A Case for Software Engineering Paradigm Shift
Towards Service Agent Orientation, in Proc. of SOSE 2018,
pp152-163, Mar. 2018.

[5] I. Levine, Squash: Microservices Debugger. Online at
https://medium.com/solo-io/squash-microservices-debugger-
5023e27533de, 5 Mar. 2018. Last access:25 Jun.2020.

[6] S. Sharma, and B. Coyne, DevOps for the Dummies, 2nd IBM
Limited Edition. John Wiley & Sons, 2015.

[7] C. Xu, H. Zhu, I. Bayley, D. Lightfoot, M. Green, and P. Mar-
shall, CAOPLE: A Programming Language for Microservices
SaaS, in Proc. of SOSE 2016, pp42-52, Apr. 2016.

[8] D. Liu, H. Zhu, C. Xu, I. Bayley, D. Lightfoot, M. Green, P.
Marshall, CIDE: An Integrated Development Environment for
Microservices, in Proc. of SCC 2016, pp808-812, Jun.2016.

[9] C. Jin, D. Abramson, M. N. Dinh, A. Gontarek, R. Moench
and L. DeRose, A Scalable Parallel Debugging Library with
Pluggable Communication Protocols, in Proc. of CCGrid
2012, pp252-259, May 2012.

[10] J. Zhang, Z. Luan, W. Li, H. Yang, J. Ni, Y. Huang and
D. Qian, CDebugger: A Scalable Parallel Debugger with
Dynamic Communication Topology Configuration, in Proc.
of CSC 2011, pp228-234, Dec. 2011.

[11] M. A. Gulzar, M. Interlandi, S. Yoo, S. D. Tetali, T. Condie,
T. Millstein, and M. Kim, BigDebug: Debugging Primitives
for Interactive Big Data Processing in Spark, In Proc. of ICSE
2016, pp784-795, May 2016.

[12] A. Spear, M. Levy, and M. Desnoyers, Using Tracing to
Solve the Multicore System Debug Problem, IEEE Computer
45(12), pp60-64, Dec. 2012.

[13] P. Alvaro, OK, But Why? Tracing and Debugging Distributed
Systems, Comm. of ACM, 60(7), pp46-47, Jul. 2017.

[14] Google, ”Cloud Debugger”, Online at https://cloud.google.
com/debugger, Last access: 6 Jun. 2020.

[15] C. Sridharan, Monitoring and Observability, Online at https://
medium.com/@copyconstruct/monitoring-and- observability-
8417d1952e1c, 4 Sept. 2017. Last access: 6 June 2020.

[16] B. Schwartz, Monitoring Isn’t Observability, Online at https:
//orangematter.solarwinds.com/2017/09/14/monitoring-isnt-
observability/, 14 Sept. 2017. Last access: 6 Jun. 2020.

[17] D. Rettori, Squash: The Definitive Cloud-Native Debugging
Tool, Online at https://itnext.io/squash-the-definitive- cloud-
native-debugging-tool-89614650cc94, 8 Mar., 2019. Last ac-
cess: 10 Jun. 2020.

[18] Solo.io, Debug Your Microservice Applications from Your
Terminal or IDE While They Run in Kubernetes, Squash
Official Website. Online at https://squash.solo.io. Last access:
25 Jun. 2020.

[19] Google Cloud Platform, Google Cloud Operations Suite Doc-
umentation, Online at https://cloud.google.com/stackdriver/
docs. Last access: 25 Jun. 2020.

[20] A. Asta, Observability at Twitter: Technical Overview, Part 1,
Online at https://blog.twitter.com/engineering/en us/a/2016/
observability-at-twitter-technical-overview-part-i.html, 18
Mar. 2016; Part 2, Online at https://blog.twitter.com/
engineering/en us/a/2016/observability-at-twitter-technical-
overview-part-ii.html, 22 Mar. 2016. Last access: 8 Jun.
2020.

[21] V. Tarcic, The DevOps 2.0 Toolkit: Automating the Continu-
ous Deployment Pipeline with Containerized Microservices,
Lean Pub, 2016.

[22] W. Shang, Z. M. Jiang, H. Hemmati, B. Adams, A. E. Hassan
and P. Martin, Assisting Developers of Big Data Analytics
Applications when Deploying on Hadoop Clouds, In Proc. of
ICSE 2013, pp402-411, May 2013.

[23] T. Jia, Y. Li, Ho. Tang, Z. Wu, An Approach to Pinpointing
Bug-Induced Failure in Logs of Open Cloud Platforms, in
Proc. of CLOUD 2016, pp294-302, Jun. 2016.

[24] M. Bohme, E. O. Soremekun, S. Chattopadhyay, E.
Ugherughe, and A. Zeller, How Developers Debug Software -
the DbgBench Dataset, in Proc. of ICSE-C 2017, pp244-246,
May 2017.

[25] W. E. Wong, R. Gao, Y. Li, R. Abreu, F. Wotawa, A Survey on
Software Fault Localization, IEEE Transactions on Software
Engineering 42(8), pp707-740, Aug. 2016.

10

