SOFTA: An Algebraic Specification Language for Developing Services

Dongmei Liu
School of Computer Science and Technology
Nanjing University of Science and Technology
Nanjing, 210094, P.R. China
dmliukz @njust.edu.cn

Abstract—Describing the semantics of services accurately
plays a crucial role in service discovery, execution, compo-
sition and interaction. Formal specification techniques, having
evolved over the past 30 years, can define the semantics of
software systems in a verifiable and testable manner. This
paper presents a new algebraic specification language called
SOFIA for describing the semantics of services. It unifies
the approaches using algebras and co-algebras for software
specifications. A case study with a real industry example, the
GoGrid cloud’s resource management services, demonstrates
that the semantics of services can be specified in SOFIA.

Keywords-formal specification; algebraic specification;
service-oriented formalism in algebras (SOFIA); semantics of
services

I. INTRODUCTION

Service-oriented computing (SOC) is a computing
paradigm that utilizes services as the fundamental elements
for distributed computing. In this paradigm, the discovery
and dynamic composition of services must be based on
accurate computational understanding of their syntax and
semantics. Most work in the description of service seman-
tics, such as OWL-S [1] for the so-called Big Web Services
and WADL [2] for the RESTful web services, has been
based on ontology. In this approach, the semantics of a
service is described by annotating its functions, and their
input and output parameters, using a vocabulary defined in
an ontology. Such descriptions have the advantages of being
easy for human developers to understand and efficient for
computers to process. However, most of these approaches
are inadequate for providing a verifiable and testable defini-
tion of the functions of a service, because an ontology can
do no more than define a vocabulary through the stereotypes
of relationships between the concepts and their instances.

Algebraic specification was first proposed in the 1970s
as an implementation-independent specification technique
for abstract data types [3]. Over these years, it has been
advanced to specify concurrent systems, state-based sys-
tems and software components based on the theories of
behavioural algebras [4] and co-algebras [5]-[7].

In comparison with other formal approaches, algebraic
specifications are at a very high level of abstraction and

Hong Zhu and Ian Bayley
Dept of Comp. and Comm. Technologies
Oxford Brookes University
Oxford OX33 1HX, UK
hzhu@brookes.ac.uk, ibayley @brookes.ac.uk

are thereby independent of implementation details. Another
attractive feature they have is that they can be used directly
in automated software testing [8]-[12]. This feature is par-
ticularly important for service engineering, because when
services are composed together dynamically, testing must
be performed automatically on-the-fly.

In our previous work, we extended and combined the
behavioural algebra and co-algebra techniques, to apply
them to service-oriented systems, and revised the algebraic
specification language CASOCC, which was originally de-
signed for traditional software entities such as abstract data
types, classes and components [11], [12]. Its revised version
CASOCC-WS was applied to the formal specification of
Big Web Services [13]. A tool that can automatically gen-
erate the signatures of algebraic specifications from WSDL
description of Big Web Services was also reported. More
recently, we have also applied CASOCC-WS to the formal
specification of RESTful Web Services and developed a tool
to perform syntax-level consistency checking [14]. A case
study with algebraic specification of a real industrial system
GoGrid has been conducted [15]. Based on these works,
we now propose a new algebraic specification language
called SOFIA to improve the practical usability of algebraic
specifications.

The remainder of this paper is organized as follows. In
Section II, we present the algebraic specification language
SOFIA. Section III reports a case study of a real industry
example. Section IV concludes the paper with a discussion
of future work.

II. ALGEBRAIC SPECIFICATION LANGUAGE SOFIA

The SOFIA language is designed for specifying the
semantics of services in an accurate and machine-
understandable manner. It is based on the theories of be-
havioural algebras and co-algebras. This section presents the
syntax of the language, explains its semantics informally,
discusses its design principles, and illustrates the style of
specification with some examples. A formal definition of
its semantics is beyond the scope of this paper and will be
reported elsewhere.

A. Overall Structure of SOFIA Specifications

We regard a service-oriented system as consisting of a
collection of software entities, which can be documents,
XML document schemas, datatypes, classes, components,
and most importantly, services. These software entities are
linked to the real world through physical objects and equip-
ment, data, abstract concepts, business processes, communi-
cation protocols, etc. All these varieties of objects, concepts,
and processes are abstracted into various types of entities.
Each type of entity is then specified by a specification unit.

Therefore, the overall structure of a SOFIA specification
is a collection of specification units, reflecting the structure
both of software systems and of the real world, conceptually.
This also supports modular development of specifications,
which is further enhanced by the splitting of each specifi-
cation unit into two partial units: a signature unit, to define
its syntax with a signature, and an axiom unit, to define the
entity’s semantics with a set of axioms that it must satisfy.
The users can also define auxiliary functions and concepts
in a Definition unit, which is particularly useful for defining
concepts and functions that are common to many units.
<Specification> ::= <Unit>«x

<Unit> ::= <Spec Unit> | <Signature Unit>
| <Axiom Unit> | <Definition Unit>

Each specification unit contains two main parts: a signa-
ture to define the syntax and a set of axioms to define the
semantics, as shown in the BNF rules below.
<Spec unit> ::= Spec <Sort Name> [<Observability>];

[extends <Sort Names>] [uses <Sort Names>]
<Signature>; [<Axioms>] End

where <Sort Name> is an identifier that names the unit. It
corresponds to the type of software entities to be specified
and is called the main sort of the unit.

A Signature Unit and an Axiom Unit with shared sort
name, but supplied separately, is equivalent to a complete
specification unit with corresponding signature and axiom
parts.
<Signature unit> ::= Signature <Sort Name>

[<Observability>]; [extends <Sort Names>]

[uses <Sort Names>] <Signature> End
<Axiom Unit> ::= Axioms <Sort Name>; <Axioms> End

In addition to specification units, a Definition Unit defines
a set of auxiliary functions or concepts that are used in the
specification.

<Definition unit> ::= Definition
<Signature>; [<Axioms>] End

[uses <Sort Names>]

We recognise two different ways in which a new unit
can be constructed from existing ones, extension and usage.
They are specified in the <extends> and <uses> clauses,
respectively.

A unit can be extended with additional elements, in a man-
ner similar to the inheritance relation of object-orientation. If
a specification unit of sort A extends sort B, then it includes

all constants, attributes, operations and axioms (explained
later) in the specification unit of sort B together with the
additional contents as specified.

A unit can use another unit, e.g. as a component, or as a
parameter or a result from an operator, etc., just like the
association relation of object-orientation. The list of sort
names separated by a comma after the keyword uses gives
the sorts that are used by the unit currently being specified.

SOFIA declares if a software entity is observable in the
sense that its states or values can be directly tested for
equality; otherwise, its states or values have to be checked
by other means, e.g. through observers. The specification of
observability has the following syntax:

<Observability> ::= is unobservable
| is observable by <Op Id>

where the operator for an observable entity must be a binary
function that returns a Boolean value. This function must be
defined in the signature of the sort.

B. Signature

The signature specifies the syntactic elements of the
software entity. SOFIA explicitly declares three kinds of
operators: constants, attributes and operators. A constant is
indicated by the keyword Const. Each constant identifier
defines a specific constant of the sort.

<Signature> ::=

{[<Constant>] | [<Attribute>] | [<Operator>]}«*
<Constant> ::= Const <ConstList>;
<ConstList> ::= <Const ID> [, <ConstList>]
<Const ID> ::= <Identifer>

An attribute is an element of the entity that represents its
state. It is indicated by the keyword Attr.

<Attribute> ::= Attr <AttrList>;

<AttrList> ::= <AttributeType> [; <AttrList>]
<AttributeType> ::= <Attr IDs> <Sort Name>
<Attr IDs> ::= <Attr ID> [, <Attr IDs>]

<Attr ID> ::= <Identifier> [<index>]

where when an attribute has an index, it actually specifies a
set of attributes indexed by the index values. The Index set
can be: (a) a consecutive set of natural numbers between an
lower bound and an upper bound, which is either a specific
natural number or ”*”, meaning indefinite, (b) an enumerated
set of identifiers representing constants, and (c) a Cartesian
product of the above two.

<Index> ::= "[" <Index set> "]"
<Index set> ::= <Single index> [, <Index set>]
<Single index> ::= <Enumerated set>

| <Lower bound> ".
<Lower bound> ::= <Natural number>
<Upper bound> ::= <Natural number> | "x"
<Enumerated set> ::=
<Enumerated ID> [, <Enumerated set>]
<Enumerated ID> ::= <Identifier>

." <Upper bound>

An operator defines an operation on the entity. It changes
the state of the entity when invoked, and may produce

outputs, too. The input parameters of an operator are given in
the domain type and the outputs produced by an invocation
are given in the co-domain. An operation always has access
to the state of the entity and may change it.

<Operators> ::= Operation <OpList>;
<OpList> ::= <Operation> [; <OpList>]
<Operation> ::= <Operator ID>
"(" <Domain Type> ")" ":" <Co-domain Type>
<Operator ID> ::= <Identifier>
<Domain Type> ::= <Type> | void
<Co-domain Type> ::= <Type> | void
<Type> ::= <Sort Name>[, <Type>]

Take sTACK of natural numbers, for example, with the
signature.

Spec STACK; uses BOOL, NAT;
Const nilStack;
Attr isNilStack: BOOL,

top: NAT;
Operation
push (STACK, NAT): STACK;
pop (STACK) : STACK;

End

This means that STACK depends on BOOL for Boolean
values and NAT for natural numbers. nilStack is a constant
(a stack without any element), isNilStack and top are
attributes, push and pop are operators.

Note that, in a traditional algebraic specification language,
the co-domain of an operator must be a singleton. Such a
signature is called algebraic; STACK has such a signature.
More recent languages, based on co-algebras, require instead
the domain to be singleton; such signatures are called co-
algebraic. SOFIA extends the algebraic and co-algebraic
approaches by allowing both the domain and the co-domain
of an operator to be non-singleton at the same time. This
makes it possible to specify stateful services naturally.

C. Axiom

Each specification unit contains logical axioms describing
the properties that are required to satisfy. An axiom consists
of a variable declaration block and a list of conditional
equations.

<Axioms> ::= Axiom: <Axiom List>

<Axiom List> ::= <Axiom> [<Axiom List>]
<Axiom> ::= <Var Declarations> <Equations> End
<Equations> ::= <Equation> [<Equations>]

Variable declarations declare a list of variables and their
types. Variables are declared “globally” to all equations in
the axiom using the “For all” keyword.
<Var Declarations> ::= For all <Var-Sort Pairs> that
<Var-Sort Pairs> ::=

<Var IDs> <Sort Name> [, <Var-Sort Pairs>]

<Var IDs> ::= <Var ID> [, <Var IDs>]
<Var ID> ::= <Identifier>

where the sort name can only be the main sort or a sort listed
in the uses clause. The variable identifiers must be unique:
they must not clash with sort names, operator names nor

with any such names in any used sorts nor with variables in
this axiom.
The syntax rules for terms are as follows.

<Term> ::= <Var ID> | <Constant ID>
|<Op ID> ["("[<Parameters>]")"]
|<Term> "." <Term> | "[" <term> "]"
|<sort name> "<" <Term List> ">"
|<Term> "#" <Number>

<Parameters> ::= <Term List>

<Term List> ::= <Term> ["," <Term List>]

Any operator in a term must either be declared in the
signature part of the sort being specified or in the signature
of an used sort. For example, if s is a variable of the
STACK sort, m and n are variables of the NAT sort, then
the following are STACK-terms of the STACK sort.

push(s, n), pop(push(pop(push(s,n)),m))

Let ¢(w) : w’ be an operator declared in a unit of sort
s. The application of an operator ¢ to an entity e with
parameters p is written in the form e.¢(p). In particular,
if w is VOID, we write e.(p.

Equations declare a list of conditional equations. The
syntax rule for an equation is as follows.
<Equation> ::= <Condition> [, if <Conditions>]

| Let <Var Definitions> in <Equation> End
<Conditions> ::=

<Condition>[(", " |"or")<Conditions>]
<Condition> ::= <BOOL Term> |
<Term> = <Term> | <Term> <> <Term>

<Var Definitions> ::=
<Var Assignment> [, <Var Definitions>]
<Var Assignment> ::= <Var ID> = <Term>

The basic form of an equation is ¢; = t,. Here is an
example of sort STACK.

For all s: STACK, n: NAT That
isNilStack (push(s,n)) = False;
pop (push (s, n)) = s;
top(push(s, n)) = n;

End

The second syntax rule for equations is designed to allow
local variable definitions, and these have the form:

Let ©z; =7,--- ,2, =7, in equs End

where zi,---x, are local variables, limited in scope to
equs, and 71, --- , T, are terms denoting the values that are
assigned to the variables. Local variables must have unique
names, must not clash with other variables in this equation,
nor with any other names, just as with global variables. The
above example can be specified as follows.

For all s: STACK, n: NAT that
Let sl = push(s,n) in
isNilStack (sl) = False;
pop(sl) = s;
top(sl) = n;
End
End

III. CASE STUDY

In this section, we report a case study of specifications
written in SOFIA. We will specify a real industry RESTful
web services provided by GoGrid.

GoGrid [16] 1is the world’s largest pure-play
Infrastructure-as-a-Service (IaaS) provider specializing
in Cloud Infrastructure solutions. It provides an API,
defined by an open document, with which its customers can
easily and dynamically deploy and manage their applications
and workloads through a programmatic interface.

A. GoGrid API

The GoGrid API is a REST-like query interface. RESTful
web services are based on the HTTP protocol, so each
GoGrid API call is an individual HTTP query. The newest
GoGrid API version 1.8 has 11 different types of objects.
There are 5 types of common operators which can be applied
to 8 objects. Some of the operators are not applicable to all
types of objects, while some objects have their own special
operators. Table I gives the applicable operators for each
type of object.

Table 1
APPLICABLE OPERATORS ON OBJECTS

Object List | Get | Add | Delete | Edit | Other Ops
Server Yes | Yes | Yes Yes Yes Power
Server image Yes Yes Yes Yes Save,Restore
Load Balancer | Yes | Yes | Yes Yes Yes

Job Yes Yes

1P Yes

Password Yes | Yes

Billing Yes

Option Yes

It is worth noting that some operators in GoGrid have
different meanings for different types of objects. So, in our
specification of GoGrid, the definitions were grouped by
object rather than by operator. For the sake of space, here
we only give the specification of the server objects because
they are one of the most important types of object and they
also have the most operators.

For each type of object in GoGrid API, the formal spec-
ification in SOFIA consists of three types of specification
units:

o Units that specify the valid requests, including their
structures and constraints on how their components may
be combined;

o Units that specify the responses with structures and
constraints as above;

« Units that specify the objects of certain types, in terms
of signatures and axioms, the latter to express semantics
of operations

The specification of GoGrid API is based on the frame-

work for specifying RESTful web services [17]. The frame-
work consists of a collection of specification units that define

Table II
NUMBER OF UNITS IN GOGRID SPECIFICATION

Type of unit No.
Framework of RESTful web service 10
Common features 37
Definition of Server operations 13
Definition of Server image operations 13
Definition of Load Balancer operations 11
Definition of Job operations 5
Definition of operations on other objects 14
Total 103

the general structure of HTTP requests and responses so that
a specific RESTful WS can be specified as extensions to
these units. The details of the framework are omitted for the
sake of space.

B. Objects and Collections

There are some objects that are related to server object
including Option, IP, Server Image, Billing and Customer.
Here we only give the specifications of server object and
its collection ListofServer. From the specification of Listof-
Server, we can get each server object from the list and count
the number of server objects in the list.

Spec Server; uses Option, IPO, ServerlImage;

Attr 1id: Long; name, description: String;
ip: IPO; image: ServerImage;
ram, state, type, os, datacenter: Option;
isSandbox: Boolean;

Axiom

For all s: Server that s.id <> Null; End
End
Spec ListofServer; uses Server;

Attr length: Integer;
Operation

items (Integer): Server;

insert (Server);
End

C. Requests and Responses

1) List Requests: There are four query parameters that
are common to all GoGrid API calls, and they are specified
as follows:

Spec CommonParameter;
Attr api_Key, sig, v, format: String;
Axiom

For all cp: CommonParameter that cp.v <> Null;

cp.sig <> Null; cp.api_Key <> Null;

End
End

where api_key is a key generated by GoGrid for security in
the access of resources, sig is an MD35 signature of the API
request data, v is the version id of the API, and format is
an optional field to indicate the response format required.
Some parameters are common to all types of requests,
but there are also further parameters depending on the type
of request. So we first specify the structure of each type
of request as one sort e.g. ListRequest, GetRequest and so
on. Then the structure of each object’s request is specified as

the extension of each type of request e.g. ServerListRequest,
LoadBalanceListRequest etc. For the sake of space, here we
give just the specification of list operation. A server list
method call returns a list of server objects of a certain
type in the GoGrid system. It is implemented using the
HTTP request method GET. Note that such operations are
the only way to determine the internal state of a service. We
specify the list request and the list request of server object
as follows.
Spec ListRequest;

extends HTTPRequest;

uses CommonParameter;

Attr para: CommonParameter;

num_items, page: Integer;
Axiom
For all lr: ListRequest that lr.num_items >= 0;
lr.page >=0, if lr.num_items > 0;

End
End
Spec ServerListRequest;

extends ListRequest;

uses ListofString;

Attr server_type: String;

isSandbox: Boolean;

datacentre: ListofString;
End

where para denotes the common query parameters defined in
last subsection, num_items is the number of items to return
so that this value will effectively paginate the results into a
number of pages with this number of items per page, and
page is the page index to return for paginated results, in-
dexed from 0. This parameter is ignored if num_items is not
specified. The sort ServerListRequest extends ListRequest
with an additional three parameters server_type, isSandbox,
datacenter which are used to filter server objects.

2) List Responses: The GoGrid API responses can be in
three different formats: JSON (JavaScript Object Notation),
XML, and CSV (Comma Separated Values). The default for-
mat, used when the optional format parameter is omitted, is
JSON. However, one benefit of using algebraic specification
is that we need only one formal specification for all output
formats.

The response to a list call contains a summary, which can
be specified as follows:

Signature ResponseSummary;

Attr total, start, returned, numpages: Integer;
End

where fotal is the total number of objects in the list, start is
the current start index for this list of objects, returned is the
number of objects returned in this list, and numpages is the
total number of pages available given the current num-items
value.

In addition to summary of the list, the response to a list
call contains status, request method, status code and a list
of returned objects. The meaning of the status code is as
follows: 200 means that the call was successful, 4xx means
there was an error in the client’s request, of which 400

means the argument is illegal, 401 means unauthorised, 403
means authentication failed, and 404 means not found. If the
status code is 5XX, it means a server error occurred. We first
specify the structure of the list response, then the structure
of the list response of server object can be extended with a
list of returned server objects.

Spec ListResponse;
extends HTTPResponse;
uses ResponseSummary;
Attr summary: ResponseSummary;
status, request_method: String;
statusCode: Integer;
Axiom
For all 1lr: ListResponse that
lr.summary.total >=0; lr.summary.start >=0;
lr.summary.returned >=0; lr.summary.numpages >=0;
End
End
Spec ServerListResponse;
extends ListResponse;
uses ListofServer;
Attr objects: ListofServer;
End

D. Semantics of the operations

For each type of request, we define an operator that takes
request as input and produces a response as the output. All
such operators have GoGrid as the context. We also need to
know the clock time on the grid, the shared secret chosen
by each user and the timestamp for checking the access
authentication. Thus, we have the following signature for the
sort ServerGoGrid, which represents the Server web service
of GoGrid cloud computing system.

Spec GServer;
uses ServerListRequest, ServerListResponse,
ServerGetRequest, ServerGetResponse,
ServerAddRequest, ServerAddResponse,
ServerEditRequest, ServerEditResponse,
ServerDeleteRequest, ServerDeleteResponse,
ServerPowerRequest, ServerPowerResponse;

Attr sharedSecrte: String;
clockTime, timeStamp: Integer;

Operation
List (ServerListRequest): ServerListResponse;
Get (ServerGetRequest) : ServerGetResponse;

Add (ServerAddRequest) : ServerAddResponse;

Edit (ServerEditRequest) : ServerEditResponse;

Delete (ServerDeleteRequest): ServerDeleteResponse;

Power (ServerPowerRequest) : ServerPowerResponse;
End

For each operator, the semantics can be characterised by
a set of axioms, but for the sake of space, we shall give two
axioms to illustrate the style of specification with the list
operator.

An important feature of the List operator is that it is an
observer. So applying it will not change the state of the
context sort ServerGoGrid. This property can be expressed
by axioms of the following form, though note that in this
case it is unnecessary as we have already declared the
operator as an observer.

For all G: ServerGoGrid, X: ServerListRequest,

X1: ServerXOpRequest that
[G.List (X)].XO0p (X1) = G.XOp(X1);
End

where xOp is any of the operators List, Get, Add, Edit,
Delete, etc.

The following axiom states that when an operation
changes the state of the server, e.g. by adding, deleting,
editing and powering a server, the List operator should be
able to observe the difference accordingly. In fact, these
axioms also define the semantics of the operators that change
the state of the system.

For all G: GServer, X1l: ServerDeleteRequest,
X2: ServerListRequest that

[G.Delete(X1)].List (X2) .statusCode =

if search (X2.name, X1l.name) = True,
G.Delete (X1) .statusCode = 200;

500,

[G.Delete(X1)].List (X2) .objects = G.List (X2) .objects,

if search(X2.name, X1l.name) = False,
G.Delete (X1) .statusCode = 200,
G.List (X2) .statusCode = 200;
End

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented the design of the algebraic
specification language SOFIA and illustrated its style of
formal specification with examples. We also reported a case
study of a real industry cloud system GoGrid to demonstrate
the value of algebraic approach in the development of
services.

We have already implemented the SOFIA language for
checking the syntax correctness and type consistency of
specification units. We have also developed a tool to translate
algebraic specifications in SOFIA into ontological descrip-
tions of service semantics [17].

We are currently developing a tool that uses specifications
in SOFIA as input to perform automated testing and verifi-
cation of web services. Another future work is to check the
consistency of specification based on ontological reasoning
as well as equational logic inferences.

ACKNOWLEDGEMENT

The work reported in this paper is partially supported
by EU FP7 project MONICA on Mobile Cloud Comput-
ing (Grant No.: PIRSES-GA-2011-295222), National Nat-
ural Science Foundation of China (Grant No. 61272420),
National Natural Science Foundation of Jiangsu Province
(Grant No. BK2011022), and the Jiangsu Qinglan Project.

REFERENCES

[1] D. Martin, et al., OWL-S: Semantic Markup for Web Ser-
vices, member submission 22 ed., W3C, http://www.w3.org/
Submission/OWL-S/, November 2004, last access: May 25,
2012.

[2] M. J. Hadley, “Web application description language
(WADL),” Sun Microsystems Inc., CA, USA, Tech. Rep.
SMLI TR-2006-153, March 2006.

(3]

(4]
(3]

(6]
(71

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright,
“Initial algebra semantics and continuous algebras,” Journal
of ACM, vol. 24, no. 1, pp. 68-95, 1977.

J.A. Goguen and G. Malcolm, “A hidden agenda,” Theorec-
tical Computer Science, vol. 245, no.1, pp.55-101, 2000.

C. Cirstea, “Coalgebra semantics for hidden algebra: Param-
eterised objects and inheritance,” in Recent Trends in Alge-
braic Development Techniques, 12th International Workshop
(WADT’97), 1997, pp.174-189.

J. M. Rutten, “Universal coalgebra: a theory of systems,”
Theor. Comput. Sci., vol. 249, no. 1, pp. 3-80, 2000.

F. Bonchi and U. Montanari, “A coalgebraic theory of reactive
systems,” Electr. Notes Theor. Comput. Sci., vol. 209, pp.
201-215, 2008.

M.-C. Gaudel and P. L. Gall, “Testing data types im-
plementations from algebraic specifications,” CoRR, vol.
abs/0804.0970, 2008.

H. Y. Chen, T. H. Tse, F. T. Chan, and T. Y. Chen, “In
black and white: An integrated approach to class-level test-
ing of object-oriented programs,” ACM Trans. Softw. Eng.
Methodol., vol. 7, no. 3, pp. 250-295, 1998.

H. Y. Chen, T. H. Tse, and T. Y. Chen, “Taccle: a methodology
for object-oriented software testing at the class and cluster
levels,” ACM Trans. Softw. Eng. Methodol., vol. 10, no. 1,
pp. 56-109, 2001.

L. Kong, H. Zhu, and B. Zhou, “Automated testing ejb com-
ponents based on algebraic specifications,” in Proceedings
of the 31th IEEE International Conference on Computer
Software and Applications (COMPSAC’07), vol. 2. Beijing,
China: IEEE CS Press, July 2007, pp. 717-722.

B. Yu, L. Kong, Y. Zhang, and H. Zhu, “Testing java com-
ponents based on algebraic specifications,” in Proceedings of
the First International Conference on Software Testing, Veri-
fication, and Validation (ICST 2008), Lillehammer, Norway,
April 9-11 2008, pp. 190-199.

H. Zhu and B. Yu, “Algebraic specification of web services,”
in Proc. of the 10th International Conference on Quality
Software (QSIC 2010). 1EEE CS Press, 2010, pp.457-464.

D. Liu, H. Zhu, and 1. Bayley, “Applying algebraic speci-
fication to cloud computing—a case study of infrastructure-
as-a-service gogrid,” in Proceeding of The Seventh Interna-
tional Conference on Software Engineering Advances (ICSEA
2012), 2012, pp. 407-414.

——, “A case study on algebraic specification of cloud
computing,” in Proc. of the 21st Enuromicro International
Conference on Parallel, Distributed and network-Based Pro-
cessing (PDP 2013), Queens University Belfast, Northern
Ireland, Feb. 2013, pp. 269-273.

GoGrid.com, “Gogrid website,” http://www.gogrid.com/, last
Access: Nov, 2013.

D. Liu, H. Zhu, and I. Bayley, “From Algebraic Specification
to Ontological Description of Service Semantics, Proceedings
of the 20th International Conference on Web Services (ICWS
2013), Santa Clara, USA, Jun. 2013, pp.579-586.

