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Abstract— This paper presents a study of the movements
of a humanoid head-and-neck robot called Eddie. Eddie has a
musculo-skeletal structure similar to that found in human necks
enabling it to perform head movements that are comparable
with human head movements. This study compares the move-
ments of Eddie with those of a more conventional robotic neck
structure and with those of a human head. Results show that
Eddie’s movements are perceived as significantly more natural
and by trend more lifelike than the conventional head’s. No
differences were found with respect to the impression of human-
likeness, consciousness, and elegance.

I. INTRODUCTION

Humans are highly adept at detecting genuine human
bodily movement and can often reliably differentiate this
from artificially generated movements such as those made
by computer animated characters or robots. The perception
of bodily movements and gestures is particularly important in
social settings where they can often convey useful informa-
tion about the intentions and feelings of others [1]. Human
head gestures in particular are known to be important in one-
to-one social communication [2].

An increasing number of robots are being developed for
human-robot interaction in social settings. However, their
ability to mimic with some degree of accuracy the move-
ments and gestures of a human may turn out to be a limiting
factor of how well these robots become integrated into these
their social settings.

In order to investigate how robots might mimic human
head movement, we have designed and implemented a hu-
manoid head and neck robot called Eddie (Figure 1). Eddie
has been designed with a skeletal neck that approximates the
human cervical spine and is actuated by 8 Pneumatic Arti-
ficial Muscles structurally arranged to mimic the 8 primary
muscles responsible for creating the movements and gestures
of the human head. A full description of the robot is given
in [3].

The study presented in this paper investigates the extent to
which the head-and-neck mechanism used in Eddie is capa-
ble of generating human-like head movements. In particular
we are interested in how the movements of this robotic head
compares with the movements of (i) a more conventional
robot head-and-neck design, and (ii) a real human head.
More conventional head-and-neck designs typically consist
of three independent (often servo-motor) actuators in the
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Fig. 1: The humanoid neck “Eddie”. (left) Frontal view of
complete apparatus. (right) Lateral view of musculo-skeletal
neck and spine construction.

neck that are arranged such that their axes of rotation are
orthogonal enabling rotational movements in the yaw, pitch
and roll directions. By virtue of the cervical spine, the human
head and neck, however, is capable of a much greater range
of movements and gestures that conventional head and neck
robots are incapable of reproducing. We believe that because
of its biomimetic design Eddie is able to achieve some of
these ‘non-rotational’ movements, and that these movements
should compare well to the movements of a human head
when contrasted to the conventional head and neck robot
design.

II. RELATED WORK

In terms of emotional acceptability, robot behaviour is a
major consideration [4], in fact even more important than
appearance [5] which is a problem for researchers in robotics,
as appearance is an easier problem to address than behaviour.
An attempt at making the physical appearance emotion-
ally acceptable can be seen in PEARL (Personal Robotic
Assistant for the Elderly) project [6] which is an attempt
to develop a mobile personal service robot for the elderly
with chronic disorders, that is, problems with no prospect
(currently) of a cure, that require some kind of interaction
with a helper. In these behaviours, motion is an important
component [7], as intentions and drives can be established
from motion. A particularly important consideration is head
gestures as human communication is multimodal [8], and
therefore need to be considered when designing robots to
interact with humans [9]. Attempts have been made at pro-
ducing accurate head gestures (to the non-technical observer)



[10] with varying degrees of success, due to their inability to
replicate non-rotational lateral translations. Examples include
Infanoid [11], Kismet [12], iCat [13], Kobian [14] and iCub
[15].

III. EXPERIMENTS AND RESULTS

We adopted an experimental approach to comparing the
movements generated by the proposed robot head-and-neck
design with those generated by a more conventional design
and a human head and neck. To this end, a series of three
videos were made, with video A capturing the head move-
ments of the Eddie robot, video B capturing the movements
of a Robothespian head, which has a conventional neck
design, and video C capturing the movements of a human
head.

Fig. 2: (left) the mask in daylight, (right) the mask in dark
conditions with backlit eyes and mouth.

Fig. 3: (left) the masked human, (center) the masked Roboth-
espian, (right) the masked Eddie.

In order to maintain ’non bias’, it was necessary to ensure
that the robots and the human could not be identified by
appearance. The videos were therefore designed to conceal
the visual identity of the human and the robots whilst
capturing their movements. This was achieved by creating
a mask that could be worn by both the robots and the
human. The mask was made of matt black material with
the eyes and mouth backlit (Figures 2 and 3). When filmed
in dark conditions, the videos captured the movements of the
backlit eyes and mouth without revealing the identity of the
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Fig. 4: Overview of results: Eddie clearly outperforms
Robothespian on the “natural” score and is statistically
similar to the human score on “lifelike” where Robothespian
falls behind. Both robots perform poorly on the “elegant”
score compared to human movement.

wearer of the mask, as desired. Each video lasted 55 seconds,
capturing random movements of the corresponding head in
each case. The videos are attached as video submission.

A ’within subjects’ experimental design was adopted
using a group of 25 participants sampled from a broad
demographic. The experimental setup involved a human
participant sat at a desk in front of a computer and a
questionnaire. The experimental procedure involved asking
the participant to watch video A (Eddie) and then asking
them to evaluate the movements depicted in the video using
a questionnaire (Table I). This procedure was repeated for
videos B (Robothespian) and C (human) using the same
questionnaire in each case.

The questionnaire used in the study was a subset of the
questions in the validated measurement tool developed by
Barkneck et al [16] that specifically evaluate movement and
human-likeness. The questionnaire uses a five point Likert
scale with the extremes Fake/Natural, Machine-like/Human-
like, Artificial/Lifelike, Unconscious/Conscious and Mov-
ing rigidly/Moving elegantly (Table I). Each participant,
therefore, completed the questionnaire three times, once in
response to each movement video. Results are summarized
in Figure 4.

TABLE I: The questionnaire

Fake 1 2 3 4 5 Natural
Machine-like 1 2 3 4 5 Humanlike
Artificial 1 2 3 4 5 Lifelike
Unconscious 1 2 3 4 5 Conscious
Moving rigidly 1 2 3 4 5 Moving elegantly

A Repeated Measures analysis of variance (ANOVA)1 was
used to test the null hypothesis that the mean overall rating
for the human and robot head movement videos were the
same (i.e. that H0 : µA = µB = µC , where µX is the mean
overall rating for video X , against the alternative that at least
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twoofthemeansaredifferent).Inallthefollowingcases
Mauchley’stestassumedsphericity.
TheresultsshowthatF(2,48)=16.193withthep-value

<0.001,indicatingalessthan0.1%probabilityofthemeans
beingthesameacrossallvideos(seealsoAppendix,Table
XII).Thenullhypothesiscanthereforeberejectedanda
post-hoctestusedtodiscoverwherethedifferenceslieinthe
evaluationsofthevideos.Thepost-hoctestwasdoneusing
pairwisecomparisonsbetweenthequestionnaireresultsfor
the3videos.Theresultsofthepairwisetestareshownin
TableII.

TABLEII: Pairwisecomparisons based onestimated
marginalmeans

(I)Rating (J)Rating (I-J) Mean Dif-
ference

Std.
Error

Sigb

Human Eddie 3.000∗ 0.733 0.001
Robothespian 5.000∗ 0.902 0.000

Eddie Robothespian 2.000 0.998 0.160
bAdjustmentformultiplecomparisons:Sidak
∗Themeandifferenceissignificantatthe0.05level

Theposthoctests,usingSidakadjustment,testthenull
hypothesesthatH0:µi=µjfori,j 1,2,3.Theoutcome
ofthistestis:
RejectH0:µHuman=µEddie,p-value<0.001.
FailtorejectH0:µEddie=µRobothespianat5%asp-value
=0.16.
Hence,thecombinedscoresalreadyallowtoestablisha
differencebetweenhumanandEddie,i.e.thatEddiedoes
notyetreachhumanscores.Thecombinedscoresdonotyet
allowtodistinguishEddieandRobothespian,but,aswewill
see,acloserlookintotheindividualscoresshowssignificant
differences.
ThevalidityofRepeatedMeasuresANOVAisbasedon
theunderlyingassumptionsofnormalityforthepopulation
ineachgroup.Thegraphicalchecksandnormalityteststhat
wereconductedshowthatthisassumptionisvalid.Moreover,
theequalgroupsizesguaranteethatevenmoderatedepar-
turesfromtheunderlyingassumptionsarenotproblematic.
However,toconfirmtheresultsevenmoreemphatically,a
non-parametrictest(Friedman)wasused.Thetestrejectsthe
nullhypothesisofequalityofmedianswithp<0.001(see
alsoAppendix,TableXIII),andtheposthoctestbasedon
StudentizedRangeTestconfirmstheresultsoftheparametric
testabove.Havingnowestablishedastatisticallysignificant
differencebetweentheoverall meansofthe3subjects,
testswerethencarriedoutonthedifferentaspectsofthe
questionnaire.
Giventhatgeneraldifferencesbetweenthethreecondi-

tionsareestablished,aRepeatedMeasuresANOVAwasused
foreachindividualofthefivescorestotestthehypothesis
thatthemeanoverallratingforthethreevideoswerethe
same(i.e.testthatH0:µEddie=µRobothespian=µHuman
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againstthealternativethatatleasttwomeansaredifferent.If
significantdifferencesarefound,aposthoctests,usingSidak
adjustmentformultiplecomparisons,teststhenullhypothe-
sisthatthescoresareidenticalforthethreeexperimental

Fig.5:PopulationplotFakevsNatural:Robothespiandid
notreceiveany5.Eddiereceivedmostlyratingsbetween3
and5.Thehumanreceivedalmostexclusively4’sand5’s.

conditionsH0 :µi= µjfori,j=1,2,3.Further,we
employFriedmanteststotestthenullhypothesisofequality
ofthemedians.

A.FakevsNatural

The Repeated Measures ANOVA results for the
fake/naturalscoreshowF(2,48) = 14.727,andp-
value<0.001(seealsoAppendix,TableXIV).Thenull
hypothesiscanthereforeberejectedandaposthoctestcan
beusedtofindoutwherethedifferenceslie.Theresultsof
thisareshowninTablesIIIandIV.

TABLEIII:MarginalMeansforFakevsNatural

FN Mean Std.Error Median

Robothespian 2.400 0.238 2
Eddie 3.440 0.252 3
Human 4.120 0.176 4

TABLEIV:PairwisecomparisonsforFakevsNatural

(I)Rating (J)Rating (I-J) Mean Dif-
ference

Std.
Error

Sigb

Human Eddie 0.680 0.304 0.101
Robothespian 1.720∗ 0.297 0.000

Eddie Robothespian 1.040∗ 0.353 0.021
bAdjustmentformultiplecomparisons:Sidak
∗Themeandifferenceissignificantatthe0.05level

Thepair-wisetestgives:
DonotrejectH0:µHuman=µEddie,p-value=0.101.
RejectH0:µHuman =µRobothespian andH0:µEddie =
µRobothespian.
Thisshowswhenratingthefake/naturalscore,themeans
ratingsforthehumanandEdiewerenotstatisticallydiffer-
ent,whereasthemeanratingforRobothespianvideowas
statisticallydifferentfromtheothertwo.Togetherwiththe
meanscores(seealsoFigure4)thisshowsthatEddie’s
movementisclearlyperceivedasmorenaturalthanRoboth-
espian’s,andclosetothehuman’srating(seepopulationplot
inFigure5).
TheFriedmanTestfortheFakevsNaturalcaserejectsthe
nullhypothesisofequalityofthemediansandtheposthoc
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Fig. 6: Population plot Artificial vs Lifelike: Robothespian’s
scores are clearly tilted to 1 (artificial), while the human
scores are tilted to 5 (natural). Eddie is in between with no
clearly visible tendency.

test based on the Studentized Range Test confirms the same
result (details in Appendix, Table XV).

B. Machine-like vs Humanlike

The mean scores for Machine-like vs Humanlike are
shown in Table V (see also Figure 4).

TABLE V: Marginal Means for Machine-like vs Humanlike

M H Mean Std. Error Median
Robothespian 2.520 0.295 2
Eddie 2.360 0.276 2
Human 2.960 0.300 3

Results in all three conditions are very similar. The Re-
peated Measures ANOVA does not reveal any significant
differences (see Appendix, Table XVI). The test of equality
of medians only gives marginal results (see Appendix, Ta-
ble XVII). Therefore, regarding the machine-like/humanlike
question, the evaluation of all three videos exhibited no
significant differences.

C. Artificial vs Lifelike

The Repeated Measures ANOVA on Artificial/Lifelike
rejects H0 : µEddie = µRobothespian = µHuman with p <
0.05 (details in Appendix, Table XVIII), thereby showing
significant differences between the 3 videos.

TABLE VI: Marginal Means for Artificial vs Lifelike

A L Mean Std. Error Median
Robothespian 2.560 0.300 2
Eddie 3.160 0.269 2
Human 3.680 0.256 4

The p-value of a sharp 5% is too marginal to rule out
the difference between the means for video B (Roboth-
espian) and video C (human). While Robothespian and
human are different at least be trend, it is interesting to
see that Eddie reaches statistically similar performance to
the human’s score. Visual inspection of the population plot
of participants’ answers (Figure 6) confirms this: while

TABLE VII: Pairwise comparisons for Artificial vs Lifelike

(I) Rating (J) Rating (I-J) Mean Dif-
ference

Std.
Error

Sigb

Human Eddie 0.520 0.366 0.424
Robothespian 1.120 0.437 0.050

Eddie Robothespian 0.600 0.436 0.451
b Adjustment for multiple comparisons: Sidak
∗ The mean difference is significant at the 0.05 level

Robothespian’s scores are tilted to 1/“artificial”, Eddie’s
answer distribution is visually closer to the human’s answers
distribution which is tilted towards 5/“lifelike”.

However, the non-parametric test fails to reject the equal-
ity of medians (details in Appendix, Table XIX). There-
fore, overall it would appear that the means for the arti-
ficial/lifelike parameter are significantly similar for video B
(Robothespian) and video C (human), as well as the medians.

D. Unconscious vs Conscious

The Repeated Measures ANOVA on this measure does not
allow to reject H0 : µEddie = µRobothespian = µHuman

(details in Appendix, table XX). Therefore, there is no
significant difference between the means. Also the hypothesis
of equality of medians can not be rejected (Appendix, Table
XXI). Therefore, for the unconscious/conscious question, all
3 videos showed statistically similar results.

TABLE VIII: Marginal Means for Unconscious vs Conscious

U C Mean Std. Error Median
Robothespian 2.720 0.268 3
Eddie 3.160 0.243 3
Human 3.040 0.241 3

E. Rigidly vs Elegantly

The Repeated Measures ANOVA allows to clearly reject
H0 : µEddie = µRobothespian = µHuman with p < 0.001
(see details in Appendix, Table XXII). Also the hypothesis of
equality of medians can be rejected (Appendix, Table XXIII).

TABLE IX: Marginal Means for Rigidly vs Elegantly

R E Mean Std. Error Median
Robothespian 2.800 0.265 3
Eddie 2.880 0.273 3
Human 4.200 0.173 4

TABLE X: Pairwise comparisons for Rigidly vs Elegantly

(I) Rating (J) Rating (I-J) Mean Dif-
ference

Std.
Error

Sigb

Human Eddie 1.320∗ 0.330 0.002
Robothespian 1.400∗ 0.316 0.001

Eddie Robothespian 0.080 0.346 0.994
b Adjustment for multiple comparisons: Sidak
∗ The mean difference is significant at the 0.05 level

The pair-wise comparison results show a significant differ-
ence in means for video C (human) and video A (Eddie) and
video C and video B (Robothespian), but not in the means



for video A and video B. Hence, Robothespian and Eddie
perform equally poor on this measure compared to human
movement.

IV. CONCLUSION

TABLE XI: Summary of the results

A/C A/B B/C
Overall
mean

Dissimilar Similar Dissimilar

Fake vs Nat-
ural

Similar Dissimilar Dissimilar

Machine-
like vs
Humanlike

Similar Similar Similar

Artificial vs
Lifelike

Similar Similar Similar

Unconscious
vs Lifelike

Similar Similar Similar

Rigidly vs
Elegantly

Dissimilar Similar Dissimilar

A = video of Eddie robot
B = video of Robothespian robot
C = video of human

The terms similarity and dissimilarity in this table denote failing to reject
and rejecting H0 at 5% significance level, respectively.

This study investigated whether Eddie [3] the biomimetic
robot head/neck system improves over traditional robot
head/neck systems in terms in terms of the perceived char-
acteristics of its motion. In summary (see Figure 4 and
Table XI) Eddie’s motion is perceived as more natural and
lifelike than the conventional robot head, but not as natural
and lifelike as human motion, yet. In comparing artificial
vs lifelike and unconscious vs conscious all the movement
in the videos were seen as similar. This indicates that the
conventional and the muscular skeletal robot head both
give perceived realistic movement for these Likert human
likeness scales. Although there is this improvement, with
the muscular skeletal robot, the robot movement videos were
still seen to be more similar to each other than to the human
movement video. Most markedly when it comes to rigidity
vs elegantly. When examining the mean values for each
video it can be seen that participants often struggled to judge
realistic movement (Tables V, VI, VIII) with values falling
close to the mid-scale value of 3. Apart from unconscious
vs conscious, Table VIII, the human movement video was
always perceived to be more realistic (higher mean values).
For fake vs natural and rigidity vs elegantly participants were
much more able to identify the human movement video as
being realistic (Tables III, IX). Although improvement has
been seen with the muscular skeletal robot; work is still
required to give convincing human movement, particularly
when comparing Rigidity vs Elegantly.

APPENDIX
TABLE XII: Tests of within-subject effects

Source Type III
Sum of
Squares

df Mean
Square

F Sig.

Rating 316.667 2 158.333 16.193 .000
Error (Rating) 469.333 48 9.778

TABLE XIII: Friedman Test results

N 25
Chi-Square 20.702
df 2
Asymp. Sig. 0.000
Exact Sig. 0.000
Point Probability 0.000

A. Fake vs Natural
TABLE XIV: Tests of within-subject effects

Source Type III
Sum of
Squares

df Mean
Square

F Sig.

F N 37.520 2 18.760 14.727 0.000
Error (F N) 61.147 48 1.274

TABLE XV: Friedman Test results for Fake vs Natural

N 25
Chi-Square 16.349
df 2
Asymp. Sig. 0.000
Exact Sig. 0.000
Point Probability 0.000

B. Machine-like vs Humanlike
TABLE XVI: Tests of within-subject effects

Source Type III
Sum of
Squares

df Mean
Square

F Sig.

M H 4.827 2 2.413 1.252 0.295
Error (M H) 92.507 48 1.927

TABLE XVII: Friedman Test results for Machine-like
vs Humanlike

N 25
Chi-Square 5.692
df 2
Asymp. Sig. 0.058
Exact Sig. 0.058
Point Probability 0.004

C. Artificial vs Lifelike
TABLE XVIII: Tests of within-subject effects

Source Type III
Sum of
Squares

df Mean
Square

F Sig.

A L 15.707 2 7.853 3.661 0.033
Error (A L) 102.960 48 2.145

TABLE XIX: Friedman Test results for Artificial
vs Lifelike

N 25
Chi-Square 4.207
df 2
Asymp. Sig. 0.122
Exact Sig. 0.123
Point Probability 0.005

D. Unconscious vs Conscious
TABLE XX: Tests of within-subject effects

Source Type III
Sum of
Squares

df Mean
Square

F Sig.

U C 2.587 2 1.293 0.846 0.436
Error (U C) 73.413 48 1.529



TABLE XXI: Friedman Test results for Unconscious vs
Conscious

N 25
Chi-Square 0.494
df 2
Asymp. Sig. 0.781

E. Rigidly vs Elegantly
TABLE XXII: Tests of within-subject effects

Source Type III
Sum of
Squares

df Mean
Square

F Sig.

R E 30.907 2 15.453 11.280 0.000
Error (R E) 65.760 48 1.370

TABLE XXIII: Friedman Test results for Rigidly vs Ele-
gantly

N 25
Chi-Square 17.062
df 2
Asymp. Sig. 0.000
Exact Sig. 0.000
Point Probability 0.000
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