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Abstract
Focused on city-scale automation, and using self-driving cars (SDCs) as a case study, this article reflects on the role of 
AI—and in particular, computer vision systems used for mapping and navigation—as a catalyst for urban transformation. 
Urban research commonly presents AI and cities as having a one-way cause-and-effect relationship, giving undue weight to 
AI’s impact on cities and overlooking the role of cities in shaping AI. Working at the intersection of data science and social 
research, this paper aims to counter this trend by exploring the reverse perspective: how do cities affect the development, 
and expose the present limits, of SDCs? The contribution of this paper is threefold. First, by comparing urban and nonurban 
environments and thoroughly examining the relationship between computer vision and city-specific sociality and form, it 
defines machine autonomy/automation as a function of the sociotechnical milieu in which an AI system operates. Second, 
and related, the paper problematizes the notion of SDCs as autonomous technologies and the role it plays in envisioning 
contending policy arrangements and technical solutions for achieving full driving automation. Finally, the article offers 
insight into a materialist and spatialized understanding of AI—namely, not as an abstract quality susceptible to replication 
within discrete machines, but rather as a distributed property emerging through embodied interactions among a multiplicity 
of agents (human, non-human, and technological) within/with their environments.

Keywords Self-driving cars · Computer vision · Urban AI · Autono-mobility · Machine learning · Autonomous 
technologies · Urban governance

1 Introduction

At the time of its first appearance on American public roads 
at the beginning of the twentieth century, the automobile 
was considered a luxury item reserved for the exclusive use 
and delight of a small number of wealthy enthusiasts and 
practitioners (Norton 2008). Since about the 1960s, the car 
has become ubiquitous (Dant 2004), establishing itself not 
just as an undisputed symbol of modernity (Lefebvre 1971), 
but also as one of the main catalysts for urban transforma-
tion—one capable of reshaping urban geography in its own 
image. Notoriously, for the automobile to become a mass 
medium of urban transportation (Dant and Martin 2001), 
profound cultural, regulatory, economic, and infrastructural 
changes were necessary over the past century (Featherstone 

et al. 2005). Cities, in other words, had to be rearranged, 
socially and spatially, around cars (Norton 2008). For dec-
ades now, automobility has been considered “a common 
feature of everyday life itself, almost a background to the 
background” (Thrift 2004, pp. 45–46). However, the recent 
surge of interest in AI technologies has brought automobility 
back into the forefront of discussions about urban govern-
ance and planning. Such renewed attention is due primar-
ily to the potential commercialization, in the near or dis-
tant future, of self-driving cars (SDCs)—namely, vehicles 
capable of automating all those functions that in traditional 
cars are governed by a human driver, including moment-
to-moment decisions within high-stake, morally ambiguous 
situations. No longer perceived as futuristic objects from 
science fiction, SDCs are now a reality. Presently, positions 
about their possible introduction into urban roads are split. 
While some consider it inevitable (Claudel and Ratti 2015), 
others regard it as fantasy deemed to remain so, at least for 
a few decades (Casner et al. 2016; Janai et al. 2020). Either 
way, there is a general agreement on the great potential of 
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SDCs to radically reshape, as the motorcar did throughout 
the twentieth century, multiple aspects of urban life. How 
this will happen is currently subject to much debate and 
speculation among urban planners and engineers, architects, 
jurists, ethicists, and city governments.

For their advocates, including automakers, software pro-
viders, and institutional actors, SDCs have the potential 
to yield significant social gains, such as enhanced safety, 
accessibility, efficiency, and sustainability. Increased road 
safety, in particular, provides the primary justification for 
their political acceptability. According to oft-reported esti-
mates, around 94% of all fatal crashes are due to human 
error. By removing human error from the driving equation, 
SDCs promise a drastic reduction in road accidents and 
fatalities. No longer requiring a person behind the wheel, 
SDCs are also believed to allow for more personal leisure, 
while expanding access to point-to-point mobility to previ-
ously underserved populations, such as the elderly and visu-
ally impaired (Woyke 2016). Another expected benefit is 
that, combined with emerging trends in car sharing, SDCs 
could ease traffic congestion with a projected 80% reduction 
in privately owned vehicles (Claudel and Ratti 2015). As a 
result, scarce urban assets like land and buildings used for 
parking could be reallocated for other purposes (Ratti and 
Biderman 2017).

Notwithstanding the potential benefits listed above, there 
are still many unanswered questions regarding their short- 
and medium-term effects, including how they will disrupt 
and reshape cities’ political economy, public infrastructure, 
people’s experience of space, and urban design itself. In this 
regard, it suffices to think of the potential cascading effects 
resulting from the marginalization or displacement of taxi 
drivers and other jobs currently requiring a human behind 
the wheel (Maughan 2019). Further eluding anticipation 
are the potential negative effects on broader political and 
socio-economic arrangements. The significant investments 
required for the city-wide deployment of SDCs will likely 
divert resources away from public transportation and other 
crucial policy domains, such as healthcare and education 
(Blyth et al. 2016). Widely debated are issues of liability 
and accountability in the event of accidents (Ganesh 2017). 
There is currently a regulatory gap concerning international 
safety and legal standards that makes it unclear who would 
be held legally responsible for any injuries or property dam-
age caused by the vehicle, such as the owner, manufacturer, 
or code developers (Schellekens 2015). Additionally, the 
extensive use of software in SDCs raises concerns about 
the potential risks of hacking attacks (Maughan 2019).

About one century ago, the automobile (or ‘horseless 
carriage’ as it was also referred to at the time) promised 
to modernize a personal mobility system primarily reliant 
on animal-pulled vehicles, which car advocates considered 
ill-suited to modern society’s needs (Norton 2008; Tarr 

and Mcshane 2007). However, the extensive, far-reaching 
impacts, both intended and unintended (such as urban sprawl 
and air pollution), of the automobile were not fully under-
stood until much later (Jacobs 1961). Currently, claims in 
favor of adopting SDCs from public and private actors, such 
as Waymo, Tesla, Uber, and others, reflect a vision for the 
future that seems both politically desirable and technologi-
cally inevitable. From their perspective, the transition from 
manual to fully automated vehicles is viewed primarily as a 
technological advancement publicly justified based on the 
expectation that SDCs will remedy the negative externalities 
associated with traditional cars.1

This vision, however, is grounded upon the flawed 
assumption that the transition to full driving automation 
will be straightforward and without political tensions. SDCs 
are often marketed as a technology that will significantly 
ameliorate city life while maintaining existing socio-spatial 
systems substantially unchanged. However, this is unlikely 
to be the case. The mundane truth is that, as concisely yet 
powerfully stated by Stilgoe (2017b, p. 5), “[t]his plug-and-
play story, in which the car is seen as able to get along with 
the world’s complexities as they are, without making addi-
tional demands, is a lie”. In other words, due to manifest 
incompatibilities between the technology’s operating logics 
and current urban infrastructure and social behaviors, sig-
nificant changes will be required before SDCs can be used in 
cities. Specifically, it is argued here, cities will be reshaped, 
socially and spatially, to accommodate the preemptive logics 
of machine vision systems used to map the vehicle’s sur-
roundings and predict future occurrences happening therein.

Focused on city-scale automation and using SDCs as a 
case study, this article reflects on the role of AI, and in par-
ticular computer vision—the main technical issue addressed 
and one of considerable practical policy and engineering 
import—as a catalyst for urban transformation.2 So far, 
critiques of SDCs have mainly centered around ethical and 
legal ambiguities due to their autonomous operations and 
decision-making (Ganesh 2017); the contested governance 

1 The Society of Automotive Engineers International (2014) has pro-
posed a general taxonomy for on-road motor vehicle classification, 
ranging from Level 0 (no automation) to Level 5 (full automation).
2 The expression AI is used here in a broad sense. To date, no con-
sensus has emerged about what AI is (not least because the term 
intelligence itself eludes univocal conceptualization). Depending on 
one’s disciplinary perspective, analytical scale of interest (e.g., iso-
lated algorithms or the broader sociotechnical systems of which they 
are but one element), and intellectual, political even, aims, AI can be 
understood in manifold ways. It is beyond my scope to provide a defi-
nition of AI. Yet, what needs to be emphasized is that AI is not just 
one single technology. Quite the opposite, the term is now commonly 
understood to be a general label for “a constellation of technologies” 
including, but not limited to, “machine learning, perception, reason-
ing, and natural language processing” (AI Institute 2016, p. 4).
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of social innovation (Blyth et al. 2016; Stilgoe 2017a, 2017b; 
Taeihagh and Lim 2019; Marres 2020); the uneven distribu-
tion of power within complex human-technical assemblages 
(Bissell 2018; Ganesh 2020); the erosion of cognitive skills 
exteriorized into machines (Casner et al. 2020); and their 
broader societal impacts (Bissell et al. 2020). Only recently, 
scholars have started to examine the specific urban implica-
tions of SDCs (Duarte and Ratti 2018). Notwithstanding, 
apart from a few exceptions (Stilgoe 2017b; Bissell 2018; 
Iapaolo 2019; Bissell et al. 2020), urban research commonly 
presents SDCs and cities as having a one-way cause-and-
effect relationship, putting excessive focus on AI's effect 
on cities and neglecting the impact of cities on AI. This 
paper challenges the prevailing techno-deterministic views 
by exploring the reverse perspective: how do cities affect the 
development—and expose the present limits—of SDCs?3

An SDC can be thought of as either a purely technical 
assemblage consisting of hardware and software that func-
tion together in executing the driving task (e.g., sensorimotor 
systems, computer vision, and machine learning algorithms), 
or as a sociotechnical assemblage embedded “within larger 
interlocking systems, rather than … as [a] discrete entit[y]” 
(Bissell et al. 2020, p.10). An SDC, in other words, can be 
seen as part of what I define here, rephrasing what Urry 
(2005) wrote about traditional cars almost two decades ago, 
as a system of autono-mobility, which encompasses more than 
just vehicles but also includes physical and digital infrastruc-
ture, machine learning algorithms, training datasets, geoloca-
tion and mapping systems, three-dimensional cartographies, 
laws and codes of the road, roboethics, mobility cultures, 
governance structures, and new social habits and lifestyles.

The methodology of this article, which aims to bridge 
the gap between social research and computer science by 
combining advances from both fields, is based on a triangu-
lar emphasis that dialogically explores the political, spatial, 
and technical aspects of AI (see Hayles 1990).4 Following 

Pasquinelli’s (2019, p. 3, italic in the original) admonish-
ment that existing research and debates on AI (see Ouch-
chy 2020) frequently “remai[n] at the level of speculation 
(‘what if AI’) and fai[l] at clarifying machine learning inner 
logic and intrinsic limits (‘what is AI’)”, this paper explores 
the underlying computational logics of SDCs in relation 
to city-specific sociality and form. Importantly, it does so 
by reintroducing materiality alongside technicality as key 
aspects for a better appreciation of the spatialized effects 
of AI.

Theoretical in scope and interdisciplinary in orienta-
tion, the contribution of this paper is threefold. First, by 
comparing urban and nonurban environments, it defines 
machine autonomy/automation as a function of the socio-
technical milieu in which an AI system operates. Here, I 
endorse Kitchin’s (2017, see also Hayles 2017) approach to 
researching algorithms, which posits that the focus should 
not be on algorithms alone but rather on the broader socio-
technical assemblages they are part of, including “social 
practices, material properties, discourses, mathematical 
abstractions, and code” (Matzner 2019, p. 4). This perspec-
tive recognizes that automated actions and decisions are 
shaped by the intricate interplay between algorithms and 
the technical elements and subsystems they are networked 
with (e.g., sensorimotor subsystems). At the same time, 
they depend on contextual factors, arising through recipro-
cal interactions with the infrastructure of the built environ-
ment and the physical world of objects and people (Kitchin 
and Dodge 2011, see also Blanchette 2012). Drawing on 
the state-of-the-art in driving research, the article then 
delves into some of the key challenges currently hinder-
ing the introduction of SDCs into cities. By exposing how 
machine vision systems operate—and fail—within envi-
ronments designed for the human senses, the paper prob-
lematizes the notion of SDCs as autonomous technologies 
and its role in envisioning contending policy arrangements 
and practical solutions for achieving full driving automa-
tion. Proposing the conceptual lens of autono-mobility, it 
is argued that a precondition for the city-wide deployment 
of SDCs will be the social and spatial reconfiguration of 
urban spaces to compensate for today’s weaknesses of 
machine learning and vision—with requirements (social, 
political, spatial, and environmental) extending within and 
beyond the immediate urban surroundings. In the conclu-
sive remarks, the article makes the argument for a material-
ist and spatialized understanding of AI—namely, not as an 
abstract quality susceptible to replication within discrete 
machines, but rather as a distributed property emerging 
through embodied interactions among a multiplicity of 
agents (human, non-human, and technological) within/with 
their sociotechnical environments.

3 As illustrated by Fuerth (2009, p. 20), the main problem with line-
arity as applied to the explanation of sociotechnical transformations is 
that it “distorts our notion of cause and effect. Under its influence, we 
tend to expect that for every problem there is a unique solution; and 
that proportionate changes of circumstances will produce proportion-
ate changes of outputs. We believe that it is possible to disassemble 
(“unpack”) compound, conglomerate issues, without destroying their 
coherence”.
4 Technical knowledge on SDCs, and AI in general, has been gained 
through a systematic survey of refereed articles on the subject from 
engineer/computer science, college-level textbooks (e.g., Russel and 
Norvig, 2016), interviews with industry experts, as well as by visit-
ing the research group: Artificial Intelligence and Media Philosophy 
(in German: Künstliche Intelligenz und Medienphilosophie, KIM), 
Karlsruhe University of Art and Design. For a technical survey on 
SDCs, see Yurtsever et al (2020). For a comprehensive overview on 
problems, datasets, and methods in computer vision for driving auto-
mation, see Janai et al (2020).
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2  Artificial sensorium

In the last few years, SDCs have been trending in discus-
sions of the future of mobility, “captur[ing] the popular 
imagination arguably more so than any other transporta-
tion technology over the past half century” (Bissell et al. 
2020, p. 117). Nevertheless, or perhaps precisely because 
of that, an important aspect entirely overlooked in the cur-
rent debates about self-driving technology is that automated 
transport systems are already fully operational in nonur-
ban settings. Examples include automatic shuttles moving 
people between and within airport terminals or unmanned 
vehicles used for good transportation in industrial set-
tings, such as factories, mines, and ports (see Chu et al. 
2018, on the future of automated ports). These vehicles 
embody a degree of technological sophistication much less 
advanced than that SDCs do. Yet, unlike the latter, they are 
employed within standardized, controlled, and highly pre-
dictable environments, where the range of unexpected situ-
ations and human-related events the vehicle has to handle 
is very limited. An automatic train, for example, operates 
on a predetermined path with set stops, making its func-
tions—and the task environment—predictable and thereby 
pre-programmable. Similarly, driverless vehicles utilized 
in industrial settings automate tasks in standardized and 
single-functional spaces with minimal-to-no interaction 
with other vehicles or people.

On the other hand, SDCs are designed to work in com-
plex, non-predictable, and information-rich environments, 
which is exactly what urban roads are. On a busy road, an 
SDC must react within milliseconds to a wide range of situ-
ations that cannot be fully anticipated. City streets, due to 
their high density, diverse architecture, and variety of road 
users, add even more uncertainty to the environment. Traf-
fic coordination can be seen as a classic instance of joint 
action (Chater et al. 2018), with mutual strangers negotiating 
intended actions and decisions according to shared rules. In 
dense city traffic, a car must simultaneously interact with 
a multitude of actors (e.g., pedestrians, bike runners, other 
vehicles, and animals), each acting independently in compli-
cated ways. At any given moment, an SDC must, to mention 
but a few examples, continuously adapt to changing circum-
stances such as traffic speed; observe traffic rules; handle 
ambiguous situations (e.g., hand signals from traffic officers 
or construction workers); interpret unwritten conventions, 
and react to emergencies or rule-breaking behavior by other 
road participants (e.g., a pedestrian crossing the street in a 
non-designated section of the roadway).

Due to the high degree of uncertainty in their task envi-
ronment and, consequently, the high unpredictability inher-
ent to their operations, it has become standard practice to 
refer to SDCs as autonomous technologies. That is because 

the way SDCs operate involves a wide degree of indetermi-
nacy,5 here understood as the extent to which the vehicle’s 
behavior is continuously adaptive to contingent factors and 
situations, making it difficult to be governed through formal 
rules. SDCs operate in a way that is predictable at a high 
level (e.g., the vehicle will go from point A to point B), 
but not moment by moment, leading to the possibility of 
unexpected outcomes. To ensure responsiveness to external 
stimuli, SDCs use machine learning algorithms, sensorimo-
tor technologies, and geo-referenced mapping and position-
ing systems. In concert, these technologies embody complex 
forms of cognition (Hayles 2017) that allow the vehicle to 
perceive and understand its surroundings and choose the 
best possible course of action from various alternatives. In 
this sense—and in this sense only—an SDC can be said to 
be operating autonomously from its designers and end-users.

Compared to traditional, logic-based forms of automa-
tion where outcomes are “already implicated in initial prem-
ises” (Parisi 2019, p. 3), SDCs have become paradigmatic of 
widespread conceptualizations of AI as discrete technologies 
or technical systems, the most advanced of which are said to 
be capable of “operat[ing] without the need for human inter-
vention or supervision, mak[ing] decisions independently, 
and accommodat[ing] to changed circumstances” (Kaplan 
2016, p. 147). Although it may be misleading, the common 
practice of extending autonomy beyond the human to include 
technology provides valuable insights. In this context, the 
term ‘autonomy’ encompasses both a political and technical 
meaning. Politically, it symbolizes the popular imagination, 
or rather misconception, of SDCs as “neoliberal, individu-
alised agent[s] … that can act independently and efficiently 
on the basis of guidelines and feedback” (Ganesh 2017, p. 
7). Technically, it speaks for the advancement of sensing and 
cognitive abilities in current and developing AI technologies 
(see Lynch and Del Casino 2020; Hayles 2017).

Despite business claims (see Tennant and Stilgoe 2021) 
and popular ideas about technology’s autonomy (see Winner 
1977), SDCs do not exist in a vacuum. They are quintessen-
tially socio-spatial agents whose main goal is to transport 
passengers from one point to another. In the process, they 
navigate a world shared with many other entities (see Mat-
tern 2017): humans (pedestrians, cyclists), animals, objects 
(road signs, street furniture), and whatever elements they 
encounter during their journey. To safely perform their task 
and avoid collisions, SDCs must be able to sense and inter-
pret their surroundings under any weather and lighting con-
ditions. In a sense, SDCs instantiate what the French philos-
opher and urbanist Paul Virilio (1994, p. 59), writing in the 
Eighties, defined as sightless vision, in which “the capacity 

5 The expression degree of indeterminacy is borrowed from the 
French philosopher Gilbert Simondon (1958/2017, p. 17).
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to analyse the ambient environment and automatically 
interpret the meaning of events” is delegated to the dyad 
computer–camera. In driving automation, that which with 
anthropomorphic vocabulary is named machine perception, 
in reality, refers to complex statistical and probabilistic mod-
els used to identify the type and location of nearby objects 
and anticipate their behavior in the near future. Manovich 
(1996, p. 12) observes that “in the field of computer vision, 
“understanding a scene” implies two goals. First, it means 
the identification of various objects represented in an image. 
Second, it means reconstruction of three-dimensional space 
from image”.6 In SDCs, machine perception relies on four 
different types of sensors: cameras, radars, ultrasound sen-
sors, and LiDAR scanners. Schematically, the overall deci-
sional loop of an SDC follows a perception-decision-action 
sequence. During the perception stage, sensor readings are 
used to create a real-time spatiotemporal view of the vehicle 
itself in relation to its surroundings, including other vehi-
cles, road signs, and street elements. Combined with prior 
knowledge of the road infrastructure and driving rules, this 
information is then used to calculate driving decisions that 
are executed by the vehicle's mechanical actuators.

It is important to note that exteroception (the percep-
tion of the road environment) is never 100% accurate. Just 
like human decision-making, decisions made by SDCs are 
always based on incomplete and imperfect information. 
Sources of uncertainty can come from either internal ele-
ments within the vehicle, such as faulty sensors or data pro-
cessing mistakes, or external factors. To mitigate internal 
uncertainty, SDCs are equipped with multiple sensors of 
different types. The rationale is that fusing data from mul-
tiple sensor sources helps achieve more accurate results 
compared to relying on just one (Hall and Llinas 1997). 
However, in complex urban environments, the largest source 
of uncertainty is usually external and related to real-time 
coordination with other traffic participants and the road 
infrastructure.

Up until today, urban roads have been built around peo-
ple and, with the rapid rise of automotive traffic, around 
motorists primarily. By “impos[ing] a strong social control 
over the most fundamental of human behaviors, whether to 
move or be still” (McShane 1999, p. 370), traffic signing 
systems (i.e., traffic lights, road signs, and painted pavement) 
are one crucial element of the road infrastructure. Used to 
convey helpful information for navigation—restrictions, pro-
hibitions, and warnings—they dictate behavior and facili-
tate coordination among traffic participants. International 

design principles for traffic signing systems are regulated 
under the Vienna Convention on Signs and Signals (1968). 
The convention categorizes road signs into seven classes, 
such as danger warning and priority signs, and specifies 
the color, size, and shape of each class. It also outlines the 
requirements for road markings, such as length, width, color, 
material, and message, as well as the colors and meanings 
of traffic lights.

Understandably, these standards have been defined to 
meet the demands of the human eye; that is, to minimize 
the time gap between the presentation of the stimulus and 
the driver's enaction of the appropriate response. Road signs, 
for instance, are strategically positioned for easy and unam-
biguous interpretation by drivers, particularly while driving 
at high speeds. By the same logic, road markings use light-
colored retroreflective materials for maximum visibility dur-
ing both day and night. During the day, they are visible due 
to their contrast against the dark pavement, while at night, 
retroreflective pigments bounce light back from the vehicle’s 
headlights. Since the visual stimuli that mediate urban flows 
are designed for human and not machine vision, interpreting 
traffic signs and reacting to signaling are challenging tasks 
for SDCs, especially in busy city environments where sig-
nificant computational resources are required to detect and 
track moving objects.

A partial solution to problem, one which, following 
Waymo (2016), is now common to most manufacturers, is 
the combination of real-time sensor data with centimeter-
accurate maps that provide contextual knowledge on, for 
example, lane geometries, traffic rules, and location of traffic 
lights. This approach not only facilitates the vehicle's self-
location in the absence of GPS, but also reduces the com-
putational load otherwise needed for mapping permanent 
features of the built environment. Urban roads are, however, 
fast-changing environments (e.g., due to new infrastructure 
or regulations). Admittedly (see Waymo 2021), building, 
maintaining, and updating maps with such fine detail is a 
prohibitively costly—labor-intensive and time-consuming—
activity. The process entails the use of human-operated vehi-
cles equipped with LiDAR technology to capture 3D images 
of selected urban areas. These images must then undergo a 
meticulous manual review and validation before they can be 
utilized by SDCs.

The political significance of such an impressive carto-
graphic project is easily recognizable (see Hardigree in 
2019). Since SDCs are only capable of navigating pre-
mapped and geo-fenced roads, these maps essentially 
define the geographical scope of the technology, limiting its 
adoption to those cities or urban areas deemed investment-
worthy. Cartography, as highlighted by Denis Wood in his 
seminal book The Power of Maps (1992), is not just a scien-
tific discipline but also a political endeavor aimed at secur-
ing mapmakers’ control over territories. The high-resolution 

6 The author (Manovich 1996, p. 12) further explains that “[a] robot, 
for instance, needs not only to recognize particular objects, but it has 
to reconstruct a representation of the surrounding environment to 
plan its movements”.
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maps used for SDCs are not neutral either, but rather reflect 
the interests of their creators. This raises various questions, 
such as who has the authority to decide which areas should 
be mapped and made accessible, who sets the priorities, and 
how the process of making urban roads intelligible to SDCs 
will either reinforce existing or create new socio-economic 
divides within and between cities.

In addition to GPS signal disruption or loss due to tunnels 
or urban canyons (Cui and Ge 2003),7 two classic problems 
for computer vision in urban settings are road sign block-
ages caused by trees or other occasional occluding elements 
(Muoio 2016) and reduced sensor performance in adverse 
lighting and weather conditions (Zang et al. 2019). The limi-
tations of cameras and LiDAR technology in poor weather 
conditions, such as fog, heavy rain, or snowfall, are well 
documented (Dannheim et al. 2014). Additionally, minor 
issues that would not significantly affect human vision, such 
as faded or leaf-covered road markings, can cause problem-
atic outcomes like off-course driving or unnecessary stops 
(Sage 2016; Flockett 2017; Barut 2018). Sporadic manifes-
tations of latent flaws in computer vision include mistak-
ing mannequins for pedestrians (Waymo 2021) or the moon 
for a yellow traffic light (Ramey 2021). Although some of 
these errors can be harmless, hilarious even, such as Tesla's 
autopilot confusing a Burger King sign for a stop sign (Lam-
bert 2020), they can also pose a danger in safety–critical 
situations, as demonstrated by the fatal 2016 Tesla Model S 
accident (Yadron and Tynan 2016).

Just like any other technology, computer vision systems 
are susceptible to both deliberate and unintentional adver-
sarial attacks. As shown in a study by Eykholt et al. (2018), 
even minor modifications to road signs, such as graffiti or 
stickers (Field 2017), can deceive computer vision systems. 
The researchers demonstrated that modest changes to a 
stop sign, like altering the background or adding graffiti, 
can result in the system mistaking it for a 45-mile-an-hour 
speed limit sign, causing the vehicle to speed up instead of 
stopping. In another recent experiment conducted within a 
controlled setting (Tencent Keen Security Lab 2019), stick-
ers placed on the road prompted a Tesla Model S to switch 
lanes and drive abruptly into oncoming traffic. These stud-
ies highlight the vulnerability of current computer vision 
systems to even simple forms of deception. If such incidents 
were to occur in real-world scenarios, the consequences 
could be serious.

In densely populated urban areas, the interaction between 
SDCs and vulnerable road users, especially pedestrians 
and cyclists, can be particularly problematic. This is due 
to two main reasons. First, the unpredictable movements 
and changing directions of pedestrians and cyclists make it 

difficult to predict their behavioral patterns. Second, people’s 
appearance variability (e.g., physical attributes or clothing) 
negatively affects algorithms used for human detection and 
classification (Janai et al. 2020). These algorithms rely on 
supervised learning, where they are taught to recognize spe-
cific categories, such as differentiating between pedestrians 
and cyclists, through labeled examples. Indeed, before they 
can successfully identify anything, algorithms must first be 
instructed on what to see in the first place. However, in real-
world scenarios, human unpredictability and variability limit 
their ability to apply their training effectively.

Also, in real-world situations, unexpected phenomena can 
emerge “that the training data simply did not include and 
could not have anticipated” (Gillespie 2014). The widespread 
use of masks during the COVID-19 pandemic highlights this 
issue. Commercial facial recognition systems like Apple Face 
ID, which had been trained on pre-pandemic images, sud-
denly had difficulties recognizing masked individuals (Simo-
nite 2020). To address this problem, new training datasets 
were required, and in some cases, this was achieved by over-
laying computer-generated masks on existing facial datasets 
(Ngan et al. 2020). Given that novel situations simply cannot 
be anticipated, it is likely that SDCs will face problems in the 
future comparable to those experienced by commercial soft-
ware technology today—with even higher stakes involved.

These examples demonstrate that computer vision relies 
not only on algorithms and sensors, but also, and perhaps 
more significantly, on training datasets. Training datasets 
play a vital role in determining what SDCs can see and 
how they behave, even more so than the algorithms that 
govern the vehicle’s behavior in real time (see Beer 2017 
on the social power of algorithms). In driving automation, 
the quality of training datasets depends on various factors, 
such as the selection of useful taxonomies, categories, and 
subcategories; accuracy in data preparation and labeling; 
availability of training and test datasets reflecting all poten-
tial scenarios self-driving cars may face in real-world condi-
tions, including corner cases (e.g., cars disregarding traffic 
signals)8; and the method of data collection, such as open-
source datasets like ImageNet or ground truth data collected 
under actual traffic conditions (e.g., the KITTI dataset).9

7 That is, city streets flanked by high-rise buildings on both sides.

8 The test dataset comprises data (e.g., images) that the learning 
algorithm has never encountered before. For this reason, test data 
must be distinct from data used for training and validation.

9 Unlike other publicly available domain-generic datasets like Ima-
geNet, the KITTI dataset is specifically meant for computer vision 
applications in automated driving. The KITTI dataset, which is 
becoming an important benchmark in the field, is based on discrete 
images retrieved from video sequences recorded around the mid-size 
city of Karlsruhe, Germany, using a human-piloted car equipped with 
various sensors, including cameras and LiDAR. See http:// www. 
cvlibs. net/ datas ets/ kitti/

http://www.cvlibs.net/datasets/kitti/
http://www.cvlibs.net/datasets/kitti/
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These elements form the foundation of computer vision. 
They can be viewed as components in a machine learn-
ing assembly line (Pasquinelli and Joler 2020), the lay-
ered intricacies of which often conceal the fact that human 
decisions always already determine the extent and scope 
of machine vision. Far from merely defining the techno-
logical capabilities and limitations of computer vision, 
training datasets are, more evidently so than algorithms, 
imbued with values, assumptions, worldviews, or, to say 
it in one word, politics—in the sense of Winner (1980). 
Crawford and Paglen (2019) observe that "the automated 
interpretation of images is an inherently social and politi-
cal project, rather than a purely technical one". Indeed, 
computer vision implies much more than just receiving 
and processing environmental cues; it also involves valu-
ing and prioritizing certain things based on cultural norms 
and expectations. In this regard, if there is any important 
lesson to be learned from the famous "Trolley Problem" is 
that, contrary to its intended purpose (Awad et al. 2018, 
p. 59), there cannot be easily determined "global, socially 
acceptable principles" to guide engineers and programmers 
as values vary among cultures and circumstances (see Gold 
et al. 2014).

The central, and always open to negotiation (Amoore 
2020), political challenge becomes determining what 
should be prioritized and made visible and what should 
be overlooked and invisibilised. In driving automation, 
nowhere is this more evident than in the initial specifi-
cation of targets of interest (e.g., pedestrian, cyclist, or 
vehicle), though other factors also play a crucial role. For 
instance, SDCs have already been shown to have difficulty 
recognizing people with darker skin tones (Ganesh 2020, 
see Wilson et al. 2019). An unwanted consequence due 
to the uneven representation of different ethnic and social 
groups in the training data, this situation still illustrates the 
much-debated problem of social biases being amplified as 
they enter the realm of computation—in this case, by ren-
dering minorities even less visible through the automation 
of perception tasks.

Until today, car manufacturers have primarily focused 
on upgrading their vehicles' technology to address the chal-
lenges of SDCs and mitigate the uncertainties that come 
with them. This has often involved equipping the cars with 
a more significant number and variety of sensors to ensure 
data redundancy but with the trade-off of greater compu-
tational costs and longer execution times. Nevertheless, 
as we will see later, it is becoming increasingly clear that 
vehicle-based solutions alone are not sufficient. The wide-
spread integration of SDCs into cities will require not only 
technical advancements in areas such as machine learning 
and computer vision, but also a social and material restruc-
turing of urban areas to create a supportive environment 
for SDCs.

3  The system of autono‑mobility

State-of-the-art self-driving technology is not yet ready to 
handle urban complexity. Arguably, computer vision’s unre-
liability in crowded city traffic is currently the main barrier 
to adopting SDCs in urban areas. Despite this, in the wake 
of what some have termed “testbed urbanism” (Halpern 
et al. 2013, see Kitchin 2014), in various cities around the 
world, there has been a push for street trials conducted by 
car manufacturers in partnership with local governments and 
other relevant stakeholders like software providers, universi-
ties, and private research centers. Famous examples include 
Waymo's partnership with the state of California (Subin and 
Wayland 2021) and Uber's partnership with Arizona, later 
temporarily suspended after a fatal pedestrian accident in 
2018 (Bradshaw 2018).

Policies and legislation regarding SDCs vary from 
country to country and city to city, reflecting different, and 
sometimes conflicting, perspectives on driving automation. 
For example, in the United States, driving automation is 
primarily seen as the capability of individual vehicles to 
operate autonomously. This car-centered viewpoint holds 
that private technology companies, not government efforts, 
will drive the transition toward full driving automation by 
creating the required technology. In Europe, conversely, "the 
debate on connected cars still prevails over autonomous 
vehicles, feasibility of which is often questioned by EU offi-
cials under European driving conditions with complicated 
city centers" (FTI Consulting 2017, p. 2). The underlying 
idea is to develop cooperative/intelligent transport systems 
where vehicles are connected to each other and infrastructure 
through wireless technologies such as vehicle-to-vehicle and 
vehicle-to-everything communications (see Ionita 2017).10

Despite these variations, some trends are ubiquitous. In 
the absence of an international agreement on the regula-
tion of SDCs, local governments are implementing regula-
tions locally. To promote mutual benefits, so far, they have 
restricted their role to granting authorization, offering incen-
tives, and potentially suspending on-road trials, while allow-
ing major market players to take the lead in the research 
and development of SDCs. This "wait-and-see" approach 
(Grieman 2019) demonstrates confidence in the potential 
benefits of SDCs, such as improved safety and efficiency, but 
also assumes that the move toward full driving automation 
will not require significant public investment. On the other 
hand, for car manufacturers, gaining access to public roads 
can provide a significant competitive advantage and lead 
to lock-in effects, as the data gathered from real-life traffic 
conditions is proprietary.

10 One example being Barcelona ‘superblock’ initiative (Bausells 
2017).
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Due to a number of accidents involving semi-automated 
or fully automated vehicle prototypes, in recent years, car 
manufacturers have faced criticism for prioritizing their 
interests over public safety. More recently, however, there 
has been a shift in the public discourse, with increasing 
concerns being voiced by car manufacturers themselves and 
other key private players (see Stilgoe 2017a). Among these, 
one commonly held view is that the main factor presently 
hindering the widespread adoption of SDCs in cities is a 
lack of government funding for the necessary infrastructure. 
As a result, public scrutiny has shifted from questioning the 
capability of SDCs to safely navigate existing urban roads 
to problematizing cities for being ill-suited to the technol-
ogy's requirements. The underlying idea is that, while there 
may still be some room for further advancement, self-driv-
ing technology has reached maturity. For Claudel and Ratti 
(2015), for instance, "[f]rom a technological point of view, 
driverless cars have arrived; the bigger task is for cities to 
integrate them". Likewise, Duval et al. (2019) argue that 
"[w]ithin cities, at least, a fully autonomous world awaits. 
Even though this world may be many years down the road, 
public officials should understand the changes ahead and 
consider the modifications needed to accommodate such 
systems". On the same lines, Oliver et al. (2018) maintain 
that "the key question we should be asking is not when will 
self-driving cars be ready for the roads, but rather which 
roads will be ready for self-driving cars". This almost unani-
mous call for greater involvement from public actors in the 
development and regulation of SDCs has two consequences. 
First, it redefines the political significance of those involved 
in governing and developing SDCs. Second, it lays the foun-
dations for new practical solutions and policy arrangements 
for implementing SDCs in the short and long term.

As noted earlier, up until now, car manufacturers have 
primarily concentrated on enhancing the technology within 
their vehicles to cope with the challenges posed by urban 
areas. However, a more effective approach could be to alter 
the external environment to make it less complex for vehi-
cles to navigate. This would entail transforming the urban 
landscape, including its design, material components, and 
social aspects, to overcome the limitations in computer 
vision technology. There are various ways to accomplish 
this, ranging from minor modifications to existing infra-
structure to more ambitious plans for creating ‘smart roads’ 
that would optimize traffic flow through the use of wireless 
communication between vehicles and the road environment 
(Duvall et al. 2019). Ford, for instance, is testing a similar 
approach in Miami-Dade County, Florida. At critical inter-
sections, the company has installed so-called ‘smart nodes’ 
equipped with cameras, radar, and LiDAR sensors. These 
nodes provide supplementary information to the data col-
lected by the car's onboard sensors, such as other vehicles 
approaching a traffic light (Ford Motor Company 2021).

However, in a world where many municipalities strug-
gle to maintain even ordinary roadways, the development 
of advanced smart infrastructure seems to be a distant goal 
for the time being. In the meantime, traditional vehicles and 
SDCs will likely coexist, yet with measures aimed at pre-
venting or controlling their interactions. Lately, the idea of 
separating SDCs from other road users has gained traction, 
with various trials underway globally (Mullin 2020). This 
would involve creating dedicated lanes for SDCs with physi-
cal barriers separating them from human-operated vehicles 
(Krisher and Eggert 2020). Another solution could be limit-
ing their use to slow-speed areas or structured environments 
such as urban highways (Hawkins 2018).

These approaches are more practical and economically 
viable compared to the extensive infrastructure changes 
needed in the long run. Nonetheless, the simplification of 
cities for SDCs will have an impact on both the built infra-
structure and the social fabric of cities, potentially resulting 
in new forms of spatial segmentation and accompanying 
political conflicts. The history of the motor car highlights 
that urban roads have always been contested by many ‘street 
rivals’ competing for access to them (see Norton 2007). 
In the early 1900s, public streets were shared by various 
groups, including pedestrians, street vendors, children, and 
cyclists—all of whom had equal rights to the road. However, 
with the arrival of the motor car, cities witnessed the emer-
gence of a new urban phenomenon, the car accident: "a new 
kind of mass death. Most of the dead were city people. Most 
of the car's urban victims were pedestrians, and most of the 
pedestrian victims were children and youths" (Norton 2008, 
p. 11). As cars, and their drivers, were initially seen, at best, 
as unruly intruders, city streets "had to be socially recon-
structed as places where motorists unquestionably belonged" 
(Norton 2008, p. 1). Over time, the growing popularity of 
cars resulted in changes to city infrastructure, including the 
division of roads into specific areas for vehicles and oth-
ers, more marginal, for pedestrians and cyclists. Along with 
these changes, new regulations were enacted to enforce these 
novel uses of the streets. In certain countries, including the 
United States, children were prohibited from playing on city 
streets, while the criminalization of 'jaywalking' restricted 
pedestrian freedom and rights. With the advent of SDCs, 
new forms of mobility and dwelling will emerge, but they 
will also require changes to current social practices and 
behaviors, including restrictions.

Urry (2004) pointed out that the widespread use of tradi-
tional cars as a personal mode of transportation was made 
possible by the concurrent growth of a globally expanding 
car system that gave them preference over other forms of 
mobility, such as walking, cycling, and rail. The author 
referred to this system as “automobility”—namely, “a 
self-organizing autopoietic, non-linear system that spreads 
world-wide, and includes cars, car-drivers, roads, petroleum 
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supplies and many novel objects, technologies and signs” 
(Urry 2004, pp. 26–27). Similarly, the widespread adoption 
of SDCs will require its own supporting system, which I 
refer to here as autono-mobility. This system encompasses 
vehicles and other elements, such as physical and digital 
infrastructure, hardware and software technology, machine 
learning algorithms, intelligent traffic control systems, train-
ing datasets, machine-readable maps, changes in liability and 
insurance, and the evolution of social norms and practices.

It should be remarked that the scope of the said system 
extends within and beyond the urban scale. The ambitious 
project to introduce SDCs into urban roads is akin to a ‘plan-
etary experiment’ (see Halpern 2019), with a wide range of 
potential implications not just for cities but political, eco-
nomic, and spatial systems at multiple interrelated scales. As 
a result, it is crucial to conduct a comprehensive evaluation 
of SDCs that considers aspects often overlooked in discus-
sions focused solely on cities.

At present, conversations about urban automation pri-
marily center on the potential for AI to replace humans in 
driving and other domains. However, this narrow perspec-
tive disregards the disproportionate amounts of planetary 
resources required for that to occur. In driving automation, 
one such resource is the screen workers responsible for 
annotating images and videos used to train the computer 
vision systems of SDCs. These workers play a critical role 
in creating the data infrastructure that supports the computer 
vision systems in SDCs. Still, this infrastructure also comes 
with high environmental costs (see Sudhakar et al. 2023). 
Thus, while it is crucial to interrogate and possibly antici-
pate the impact of SDCs on cities, it is just as important 
to recognize the existing demands they already place on a 
global network of resources, labor, and data (Crawford and 
Joler 2018).

4  Conclusion: on the spatiality 
and materiality of urban AI

This article has thoroughly examined the interplay between 
computer vision and city-specific sociality and spatiality. 
By taking a broader view of the sociotechnical system of 
autono-mobility, rather than just focusing on SDCs as the 
central unit of analysis, the article has made the case that 
urban transformation should not be solely viewed as a result 
of the integration of SDCs into cities, but rather as a neces-
sary prerequisite for their successful deployment. Specifi-
cally, cities will need to undergo significant changes, socially 
and spatially, aimed accommodating the requirements and 
limitations of today's computer vision systems. Additionally, 
the study has advocated for a more comprehensive exami-
nation of the far-reaching, more-than-urban consequences 
of autono-mobility, including the planetary—social and 

environmental—costs implicated in the ongoing process of 
bringing fully automated vehicles onto city streets.

Yet, another important aspect needs to be emphasized: 
SDCs are nowhere near as autonomous as they are com-
monly portrayed. This is not to undermine their advanced 
cognitive abilities, as demonstrated by their capability to 
understand contextual information and adjust to changing 
surroundings (Hayles 2017). However, if applied uncriti-
cally to AI and SDCs specifically, the concept of autonomy 
is complicated for three main reasons.

First, in the near term, the most feasible approach to inte-
grating SDCs into urban roads is limiting their functions by 
restricting their usage to more structured environments such 
as dedicated lanes. This approach would make the vehicle's 
behavior more predictable and, in a sense, less autonomous, 
similar to that of automated shuttles in airport complexes. 
Nonetheless, the idea of lowering the world’s complexities 
to increase technological autonomy is, at best, paradoxical. 
The same holds for long-term strategies. Currently, there is 
no consensus on the best way to manage the transition to 
full driving automation, except that it will require increased 
connectivity and interdependence between road actors to an 
unprecedented degree. In other words, enhancing road safety 
and improving traffic flow will be accomplished less through 
greater autonomy of individual vehicles and more through 
improving the interconnectivity among cars and between 
cars and road infrastructure, resulting in environments with 
collective cognitive capabilities that surpass those of indi-
vidual actors.

Second, autonomy and intelligence are frequently mis-
taken as synonymous in discussions of AI, both among the 
general public and in academic circles, as if these traits are 
inherent in individuated technologies. This widespread per-
ception of AI closely aligns with the liberal conception of 
humans as autonomous individuals possessing free will and 
innate intellectual faculties. However, this view disregards 
the extent to which intelligence is relational, embedded, situ-
ated, and infrastructural (Bruder 2019). Within an AI sys-
tem, intelligence (and decision-making) can rarely, if ever, 
be attributed to one single entity. Instead, intelligent behav-
ior is the outcome of complex interactions between multi-
ple components and subsystems, each with its own material 
properties and limitations that influence the overall function-
ing of AI. At the same time, the situated decisions made by 
AI technologies, especially embodied systems like SDCs, 
are not made in isolation but shaped through mutual inter-
actions with various human and non-human actors within a 
shared environment. Furthermore, as my comparative exam-
ination of urban and nonurban environments demonstrates, 
space is not just an incidental milieu but an integral aspect 
of AI that continuously shapes the affordances and limita-
tions of the technologies it encompasses and interacts with.
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Finally, it is essential to remember that AI is a human 
endeavor, encompassing all aspects from data collection 
to preparing training datasets and selecting the appropri-
ate deployment environment. When humans disappear from 
the driving seat, it becomes ever more crucial to understand 
where else they are involved, including the relevant sites and 
scales where human decision-making continues to govern 
technology and affect its outcomes.
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