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Abstract

Testing has been widely recognised as difficult for Al applications. This paper proposes a set
of testing strategies for testing machine learning applications in the framework of the data-
morphism testing methodology. In these strategies, testing aims at exploring the data space
of a classification or clustering application to discover the boundaries between classes that the
machine learning application defines. This enables the tester to understand precisely the be-
haviour and function of the software under test. In the paper, three variants of exploratory
strategies are presented with the algorithms implemented in the automated datamorphic test-
ing tool Morphy. The correctness of these algorithms are formally proved. Their capability and
cost of discovering borders between classes are evaluated via a set of controlled experiments
with manually designed subjects and a set of case studies with real machine learning models.

Keywords: Artificial intelligence, Software testing, Automation of software test, Datamorphic
testing, Exploratory testing, Test strategies

1. Introduction

It is widely recognised that the generation of test data for Al applications is prohibitively
expensive (Tian et al.,, 2018). Checking the correctness of a test result is also notoriously diffi-
cult, if not completely impossible (Segura et al., 2018; Zhou and Sun, 2019). Moreover, existing
testing techniques for measuring test coverage and the automation of testing activities and pro-
cesses are not directly applicable (Zhu et al., 2018). Testing Al applications is therefore a grave
challenge for software engineering (Bai et al., 2018). Developing novel approaches to test Al
applications is highly desirable (Gotlieb et al., 2019).

In (Zhu et al.,, 2018, 2019b), we proposed a method called datamorphic testing for testing
Al applications and reported a case study with Al applications. In (Zhu et al., 2019a, 2020) we
developed this method further, defined the notion of test morphisms and reported an automated
testing tool called Morphy. In (Zhu et al., 2020), we defined formally a set of test strategies that
combine datamorphisms to cover various scenarios in Al applications; (Zhu et al., 2019a) reports
case studies that show the strategies significantly improve automated in testing Al applications.

*This paper is an extended and revised version of the conference paper by Zhu and Bayley (2020).
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In (Zhu and Bayley, 2020), we proposed another set of strategies to test the classification
and clustering variety of Al applications, as they are very common and arise from machine
learning and data analytics techniques; see, for example, (Aggarwal, 2015; Mohri et al., 2012;
Shalev-Shwartz and Ben-David, 2014). These strategies are based on the idea of exploratory
testing, in which outputs from the previous tests is used to change the focus of testing so that
as much as possible of the application’s functionality is explored (Whittaker, 2009). Whereas
confirmatory testing verifies and validates the correctness of the software under test with re-
spect to a given specification, exploratory testing treats it as an object unknown and conducts
experiments to discover its functions and features. The two approaches also differ in their
treatment of test cases. Confirmatory testing treats test cases as being mutually independent
whereas exploratory testing uses the results of earlier test cases to guide the selection of sub-
sequent test cases. In particular, the strategies in (Zhu and Bayley, 2020) aim at discovering the
borders between classes of a classifier. The main contributions of (Zhu and Bayley, 2020) are:

« The notion of Pareto front was introduced and formally defined to represent borders be-
tweel classes.

« Strategies to produce Pareto fronts from machine learning models were formally defined
as datamorphic testing algorithms.

« The algorithms were formally proved correct and implemented in the Morphy tool.

« Their cost efficiency was demonstrated by conducting controlled experiments with 10
manually coded classifiers as subjects.

This paper extends that work and has the following main contributions:

« The notion of completeness is formally defined for a datamorphic test system to be used
for exploratory testing.

« A systematic method is proposed for constructing exploratory test systems for any feature-
based classifier, which are among the most common types of machine learning applica-
tions; their completeness was also proven.

« We extend the evaluation in (Zhu and Bayley, 2020) by building 48 real machine learning
models constructed from 3 real datasets using 8 different machine learning algorithms,
in addition to 10 manually coded classifiers already used in (Zhu and Bayley, 2020). For
each strategy, we measure both its cost and its capability of discovering classifier borders.
The evaluation found that cost-effectiveness is high for both.

The paper is organised as follows. Section 2 defines the basic concepts underlying the work:
the basic notions and notations of machine learning classifiers, the exploratory testing ap-
proach, the datamorphic testing method and the automated testing tool Morphy. Section 3
is a theoretical study of the exploration test systems for various types of feature based classi-
fiers, which proves that such test systems exist for all such types of feature based classifiers.
Section 4 defines the exploration strategies and illustrates their uses with an example. Section
5 reports the controlled experiments with the 10 manually coded classifiers and 48 machine
learning models. Section 6 compares the proposal testing method with related work. Section 7
concludes the paper with a discussion of future work.
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2. Preliminaries

In this section, we briefly review the notions and notations underlying our proposed ap-
proach.

2.1. Classification Applications

Clustering as a data mining and machine learning problem is the partitioning of a given set
of data points into groups containing similar data points. The grouping is based on a notion
of similarity between data points, defined formally with a distance function on the data space.
Two pieces of data that are similar to each other should be put into the same group, whilst data
that are dissimilar should be placed in different groups. Whereas clustering is unsupervised
learning, classification is supervised learning. Given a number of examples of data points and
their classifications, the algorithm learns how to assign data to groups (Aggarwal, 2015; Mohri
et al., 2012; Shalev-Shwartz and Ben-David, 2014).

In both clustering and classification, the result is a program P that maps from the data space
D into a number of non-empty groups G such that D = | J () and Vg,q € G.(g # ¢ = gNg =
0). We say that P is a classification application. We will write P(x) to denote the output of P
on an input x € D, and call P(x) the classification of x by P. We also assume that there is a
function ||-,-|| : D x D — R* (R* = {x € R | x > 0}) measuring the distances between any two
points x and y in the data space D, with shorter distance denoting greater similarity, such that:

. Vx e D.(|x, x|| = 0);

« Yx,y € D.(|lx, yll = 0);

« Yx,y € D.(|lx, yll = ly, xID;

o Vx,y,z € D.(llx, yll + [y, zll = I, zl)).

For a classification program, it is crucial that data is assigned to the correct classes. However,
the borders between classes are often unknown if the classification program is obtained through
machine learning and data mining. The goal of the exploratory testing proposed in this paper
is to find a set of data pairs that represents the borders between classes. Thus, we introduce the
notion of a Pareto front for the classification as defined by the program P under test.

Definition 1. (Pareto Front of Classification)

Let P : D — G be a classification program, ||,-|| : D X D — R* be a distance metric defined
on the input space D, and 6 > 0 be any given real number. A set {{a;, b;)| a;,b; € D,i =1,---,n}
of data pairs is a Pareto front of the classes of D according to P with respect to ||, || and 6, if for
alli=1,---,n, P(a;) # P(b;) and ||a;, b;|]| < 6. O

A Pareto front can show accurately the borders between classes within a tolerable error
margin 6. In this way;, it helps testers to determine whether the classification is correct or not.

The structure of the data space D determines the type of the classification system. We now
define a few standard types that are often seen in the literature.

Definition 2. (Feature Based Classifier)
Let P : D — G be a classification program. We say that P is a feature based classifier if there
is a natural number K > 1 such that D = Dy X- - - Dg, where foreveryi = 1,---, K, D; is the set of
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values of a feature f;. Moreover, a feature f; is discrete non-numerical if D; is a finite non-empty
set. A feature f; is discrete numerical, if D; is the set of integer values or natural numbers. A feature
[; is continuous numerical, if D; is the set of real numbers, or a non-empty interval of real numbers.

O

As these are disjoint alternatives, a feature based classifier can further be classified disjointly
according to the types of its features.

Definition 3. (Types of Feature Based Classifiers)
Given a feature based classifier P : Dy X --- Dx — G, where D; is the domain of feature f;, we
say that

¢ P is a discrete non-numerical feature based classifier or simply a discrete non-numerical
classifier, if all features f; are discrete non-numeric.

P is a discrete numerical feature based classifier or simply a discrete numerical classifier,
if all features f; are discrete numeric.

¢ P is a continuous numerical feature based classifier, or simply a continuous numerical
classifier if all features f; are continuous numeric.

* P is a hybrid feature based classifier or simply hybrid classifier, if its data space contains
more than one type of features. O

Feature based classifiers are the most common kind of data analytic and machine learning
applications. There are other more complicated classifiers, such as time series classifiers, but in
this paper we will only study feature based classifiers.

Example 1. Consider a classifier that classifies the points in a two-dimensional continuous space
[0,2n] X [—1, 1] into three classes: red, black and blue as illustrated in Figure 1. This example
is a continuous numerical classifier. In this example, data points x and y are a Pareto front pair
between black and red classes, if x isred and y is black and they are very close to each other. Such
pairs can show accurately the borders between classes, and thus help testers to determine whether
the classification is correct or not. a

Figure 1: Data Space of the Running Example

In the rest of this paper, we will use the above classifier as a running example to explain the
definitions of notions and to illustrate the exploration strategies.



2.2. Exploratory Testing

Although exploratory testing (ET) has been widely practised in the industry for a long time,
the first use of the term “exploratory testing” was in a book by Kaner 1988. It takes a pragmatic
approach to software testing under normal business conditions and is based on his experiences
as a software testing engineer and manager in the IT industry. Kaner wrote the book initially
as a training and survival guide for his staff, but it soon developed into a best seller textbook
on software testing used by other practitioners throughout the IT industry (Kaner, 1988; Kaner
et al., 1999).

Exploration plays an important role in Kaner’s approach to software testing. It was soon
recognised as an alternative and complementary approach to existing techniques in the litera-
ture that emphasize the systematic design and scripting of test cases prior to testing. The notion
of ET was further developed by Kaner and other researchers with industry background such
as Bach (2002; 2003), Copeland (2004), Whittaker (2009), and Hendrickson (2013). etc. Today,
ET is not only widely recognised and practised in the industry, but also has become an active
research topic on the software testing.

Bach (2003) defines ET as “simultaneous learning, test design, and test execution”; according
to Hendrickson (2013) this is widely quoted. Other advocates of ET give similar definitions.
Graham et al. (2007, Page 113) defines it as “a test design technique where the tester actively
controls the design of the tests as those tests are performed and uses information gained while
testing to design new and better tests”. Copeland (2004, Page 202) states that “to the extent that
the next test we do is influenced by the result of the last test we did, we are doing exploratory
testing. We become more exploratory when we can’t tell what tests should be run, in advance
of the test cycle” Loveland et al. (2005, Page 339) call ET “artistic testing”, defined as “testing
that takes early experiences gained with the software and uses them to device new tests not
imagined during initial planning. It is often guided by the intuition and investigative instincts
of the tester”. Whittaker (2009, Page 16) also characterised ET as a process in which “testers may
interact with the application in whatever way they want and use the information the application
provides to react, change course, and generally explore the application’s functionality without
restraint”. He argued that ET is not ad hoc but a powerful testing technique. The power comes
from using the information provided by the software under test to alter the course of testing.
This process is what Hendrickson (2013, Page 7) called “steering”. Given its importance in ET,
Hendrickson (2013) revised Bach’s definition by including steering explicitly. She wrote that ET
is “simultaneously designing and executing tests to learn about the system, using your insights
from the last experiment to inform the next”. She further identified four essential elements of
ET and explains these distinctive key attributes by regarding ET as experiments as follows.

« Designing: identifying interesting things to vary and interesting ways in which to vary
them so that the experiment can be better performed.

« Executing: all dynamic testing involves executions of the software on test cases, but in
ET a test case is executed immediately when it is designed.

« Learning: the testers “discover how the software operates”.

« Steering: using the insights gained from the previous test execution(s) to inform the next.

It is worth noting that “learning”, or more precisely, “discovery”, is perhaps the most fun-
damental feature that distinguishes ET from traditional approaches to software testing, which
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is regarded as a validation and verification technique and/or method; see, for example, (Kung
and Zhu, 2009). Itkonen et al. (2016) regard such traditional approaches to software testing as
confirmatory testing. In other words, it aims to confirm existing theories about the software
under test, typically to prove (or disprove) the correctness of the software with regards to the
expected output and behaviour. They pointed out that ET aims to discover behaviours that are
new in contrast to mechanical executions of pre-scripted test cases. Therefore, as Whittaker
(2009) pointed out, ET is most suitable for testing software where a precise specification of the
system is not available, such as GUI-based systems. Machine learning applications are also lack
precise specifications so ET is applicable for them as well.

ET is often considered to be a manual testing approach but it need not be. Whittaker (2009)
explicitly states that it “doesn’t mean we cannot employ automation tools as aids to the pro-
cess”. Itkonen et al. (2016) also point out that the goal of test automation in ET is “to free
human resources for other types of testing activities”. The goal of this paper is to automate the
application of ET in this way when testing machine learning applications.

ET is usually unscripted, whereas traditional testing is scripted as it pre-specifies test cases,
mechanically executes them and compares output values to expected values, also pre-specified.
However, ET need not be unscripted. Whittaker (2009) pointed out that “It isn’t necessary
to view exploratory testing as a strict alternative to script-based manual testing. In fact, the
two can co-exist quite nicely”. He distinguishes four types of ET: freestyle, scenarios-based,
strategy-based, and feedback-based (Whittaker, 2009, Page 184). He proposed a set of test strate-
gies as guides to exploratory testers and studied a set of scenarios in exploratory testing. From
freestyle to feedback-based ET, the patterns and guides for the testers become more and more
specific and prescriptive. However, none of these exploratory strategies have been automated.
Our approach to automating ET is to formally define the strategies of exploration as algorithms
and then to implement them in the framework of datamorphic testing.

2.3. Datamorphic Testing

In the datamorphic software testing method (Zhu et al., 2019a), software artefacts involved
in testing are classified into two types: entities and morphisms.

Test entities are objects and data that are used and/or generated in testing. These include
test cases, test suites/sets, the programs under test, and test reports, etc.

Test morphisms are mappings between entities. They generate and transform test entities to
achieve testing objectives. They can be implemented as test code and invoked to perform test
activities and composed to form test processes. The following are the test morphisms recognised
by the datamorphic test tool Morphy (Zhu et al., 2020).

o Test set creators create sets of test cases. They are called seed test case makers in (Zhu,
2015; Zhu et al., 2019b). A typical example is random test case generators like fuzzers
(Sutton et al., 2007).

« Datamorphisms are mappings from existing test cases to new test cases. They are called
data mutation operators in the data mutation testing method (Shan and Zhu, 2009).

« Metamorphisms are mappings from test cases to Boolean values that assert a program’s
correctness on test cases. They are test oracles. Formal specifications and metamorphic
relations in metamorphic testing (Chen et al., 2018; Segura et al., 2018) can also be used as
metamorphisms. Mutational metamorphic relations introduced in (Zhu, 2015) are meta-
morphisms.



o Test case metrics are mappings from test cases to real numbers. They measure test cases
giving, for example, the similarity of a test case to the others in the test set.

o Test case filters are mappings from test cases to truth values. They can be used, for exam-
ple, to decide whether a test case should be included in a test set.

o Test set metrics are mappings from test sets to real numbers. They measure the test set
quality, such as its code coverage (Zhu et al., 1997).

o Test set filters are mappings from test sets to test sets. For example, they may remove
redundant test cases from a test set for regression testing.

o Test executers execute the program under test on test cases and receive the outputs from
the program. They are mappings from a piece of program to a mapping from input data
to output. That is, they are functors in category theory (Barr and Wells, 1989).

o Test analysers analyse test sets and generate test reports. Thus, they are mappings from
test sets to test reports.

A test system T = (&, ) in datamorphic testing consists of a set & of test entities and a
set ./ of test morphisms. In Morphy (Zhu et al., 2019a), a test system is specified as a Java class
that declares a set of attributes as test entities and a set of methods as test morphisms.

Given a test system, Morphy provides testing facilities to automate testing at three different
levels. At the lowest level, various test activities can be performed by invoking test morphisms
via a click of buttons on Morphy’s GUL At the medium level, Morphy implements various
test strategies to perform complex testing activities through combinations and compositions of
test morphisms. At the highest level, test processes are automated by recording, editing and
replaying test scripts that consist of a sequence of invocations of test morphisms and strategies.

Test strategies are complex combinations of test morphisms designed to achieve test au-
tomation. Three sets of test strategies have been implemented in Morphy:

« Mutant combination: combining datamorphisms to generate mutant test cases; see (Zhu
et al., 2019a).

« Domain exploration: searching for the borders between clusters/subdomains of the input
space;

o Test set optimisation: optimising test sets by employing genetic algorithms.

This paper focuses on domain exploration strategies, which will be defined in Section 4.

2.4. Overview of The Proposed Approach

The approach of this paper and its previous work (Zhu and Bayley, 2020) is to apply the four
ET principles identified previously to test feature-based classifiers built using machine learning
and data analytics techniques:

Firstly, on test design, the variations in test cases are formally defined by a set of datamor-
phisms that can be applied to the features of the classifier under test. These datamorphisms
are employed to explore the data space of the ML application. A major contribution of this
paper is to formally define the notion of completeness for ET test systems, and we prove that
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complete test systems exist for feature-based classifiers; see Section 3. This enables a complete
exploration of the input space.

Secondly, on execution, in our approach, each time a new test case is generated, the ML
model is invoked, and the output of the invocation is used to generate the next test case. In
fact, the test executor is an important component of our definition of ET test systems; see
Section 3.

Thirdly, on learning, our goal in testing is to discover the borders between classes as defined
by the ML model under test. Such information is unknown before testing, but the results in the
form of Pareto front can improve significantly the tester’s knowledge about the behaviour of
the model.

Finally, on steering, we study three strategies in which the outputs of previously executed
test cases are used in three different ways to decide the next test case. These strategies are
defined as algorithms and implemented in the automated datamorphic testing environment
Morphy. We will also formally prove that these strategies correctly achieve the goal of explo-
ration, i.e. they detect the borders between classes as defined by the ML model under test; see
Section 4.

We will also automate the testing process by implementing the technique in the datamor-
phic testing framework.

3. Exploratory Test Systems for Feature Based Classifiers

Exploratory test systems are test systems for ET. In this section, we will introduce the notion
of exploratory test systems and the notion of completeness for such test systems. We will
then constructively prove the existence of complete test systems for each type of feature based
classifier.

3.1. Structure of Exploratory Test System

To apply an exploratory test strategy to a classification program P : D — G with a distance
function ||, ||, we require that the test system 7 = (&, .#) has the following properties.

1. The set .# of morphisms contains a test executer Exep(x) that executes the program P
under test on a test case x and receives the output of P; that is Exep(x) = P(x). In the
sequel, we will write P(x) for Exep(x) for the sake of simplicity.

2. Thereis a set W C .# of unary datamorphisms defined on D. Informally, for eachw € W
and x € D, w(x),w(x), - - -, w(x) can generate a sequence of data points in D, where
w!l(x) = w(x), w1 (x) = w(w"(x)). These datamorphisms are called traversal methods.

3. There is also a binary datamorphism m € .# such that

Vx,y € D.(lx, yll > 6m = llx, mQe, | < [1x, yll A lly, mCe, I < lx, D) (1)

where 6,, = Minx#yeD”lx’ y“}

Informally, the datamorphism m calculates a point between x and y, if the distance be-
tween them is greater than the minimal distance J,, among points in the data space. We
will call m the midpoint method.



Note that for all x,y € D, because the program P under test classifies x and y into different
classes, the midpoint m(x, y) between x and y must be either not in the same class as x or not
in the same class as y. Formally, we have:

(P(x) # P(y)) = (P(x) # P(m(x, y)) V (P(y) # P(m(x, y)). )

Also, note that it is unnecessary to include the distance metric ||-, || in the test system as a
test morphism. As we will see in Section 4, the algorithms of exploratory test strategies do not
need it.

3.2. Completeness of Exploratory Test Systems

For a test system to be able to explore the whole data space of a classifier, we require the set
of datamorphisms is able to reach every data point in the space by applying the datamorphisms
on any arbitrary starting point. We say such a set of datamorphisms is complete. Completeness
may not be possible for a classifier on continuous data space. In such cases, we would like to
reach the target point as close as is desired. This property of test system is called approximate
completeness.

Before we formally define these notions of completeness, we first define the notion of com-
positions of datamorphisms. Let .#Z # 0 be a set of datamorphisms.

Definition 4. (Composition of Datamorphisms) Let X be a set of variables ranging over test cases.
The set of compositions of datamorphisms in . is recursively defined as follows.

1. For all x € X, x is a composition of datamorphisms in .4 of order 0.

2. m(ey,- -, ex) is a composition of datamorphisms in A of ordern+1, ifm € .4 isk-ary, and
ey, -, e are compositions of datamorphisms in .# , and n is the maximum of the orders of
1, ", €. O

Informally, a composition of datamorphisms is an expression with datamorphisms as the
operators and variables as the parameters. For example, m;(ma(m3(x;, x2))) is a composition
of two unary datamorphisms m,,m; and one binary datamorphism ms, where x; and x, are
variables. Given a composition of datamorphisms, a test case can be obtained by substituting
existing test cases for the variables of the composition, and we say that the result is a mutant
test case obtained by applying the composition to the existing test cases.

Definition 5. (Completeness)

An exploratory test system T = (&, .#') on data space D is complete, if for alla, b € D, there
is a composition ¢(x) of datamorphisms in .# such that b = ¢(a).

An exploratory test system 7 is approximately complete, if for alla, b € D and every § > 6,,,
there is a composition ¢ of datamorphisms in .# such that ||b, p(a)|| < 6. O

Note that, in a real-world application, in a multi-dimensional data space some combinations
of feature values may be invalid or meaningless. For example, a human who is 2 meters tall but
only weights 20kg is physically impossible. Our completeness requirements on an exploratory
test system still require the test system to cover such data. This will enable testing on invalid
inputs, which are useful, for example, to understand how the software will react to input errors.

In the remainder of this section, we construct a complete or approximately complete ex-
ploratory test system for each type of feature based classifier.
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3.3. Continuous Numerical Classifiers

Given a continuous numerical classifier, we construct two unary datamprophisms up;(x)
and down;(x) for each feature f; as the traversal methods and a binary datamorphism midg(x, y)
as the midpoint method. The set of datamorphisms will form an approximately complete test
system. Let ¢; > 0 be a given constant real value. We define:

upi({xi, -+, xg)) = X1, +*, X + Cj,*** Xg) (3)
downi({x1," -+, Xg)) = (X1, +, X; — Cj, - ** Xk (4)
midE((-xla'"’xK>’<y1""9yk>):<)q2ﬁv"'%> (5)

There are many different ways that we can define distance metrics on real numbers. The
following is the Euclidean distance on multi-dimensional real numbers.

s xk) s s v lle =

The following are a few well-known properties of Euclidean distance, which are useful for
proving the approximate completeness of the test system.

Lemma 1. The distance metrics ||, ||g has the following properties.
1. Vxe D. ||x, x||g = 0O;
2. Vx,yeD.|x,yllg = 0;
3. Vx,y e D.|Ix,2le < |Ix, ylle Allz, Ylle < |lx, yllg, where z = midg(x, y).
4. Vx,ye D. ||x,Zllg = % where z = midg(x,y). O

Let Wg = {upi(x)|i = 1,---, K} U {down;(x) | i = 1,---, K} U {mid(x,y)}. Applying these
properties of the midpoint datamorphism midg(x,y) and Euclidean distance metrics ||x, y||g,
we can prove that the set of datamorphisms Wy defined above satisfies the requirements of
exploratory test systems on datamorphisms.

Theorem 1. The set Wg of datamorphisms together with the distance metrics ||x, yl|g satisfy the
conditions of exploratory test systems on datamorphisms.

Proof. By (6), 0 = Minyzyep (lx,yllg) = 0. Therefore, by Lemma 1(4), the condition given in
Equation (1) is true. The theorem is true. O

Example 2. Figure 2 gives the traversal and midpoint methods in the Morphy test specification for
the classifier of the running example. The leftward and rightward methods implement the traver-
sal methods down, and up,, respectively. The upwards and downward methods implement the
traversal methods up, and down,, respectively, where c, = ¢y, = 0.2. The method mid implements
the midg datamorphism, which calculates the geometric midpoint between x and y as defined in
equation (5). Therefore, by Theorem 1, they form an exploratory test system with the following
distance function.

112 1) 1= = 31 + (= 3)?
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@Datamorphism

public TestCase<TwoD, Colour> upward(TestCase<TwoD, Colour> seed){
TestCase<TwoD, Colour> mutant = new TestCase<TwoD,Colour>();
TwoD point = new TwoD(seed.input.x, seed.input.y + 0.2);
mutant.input = point;
return mutant;

}

@Datamorphism

public TestCase<TwoD, Colour> downward(TestCase<TwoD, Colour> seed){
TestCase<TwoD, Colour> mutant = new TestCase<TwoD,Colour>();
TwoD point = new TwoD(seed.input.x, seed.input.y - 0.2);
mutant.input = point;

return mutant;

@Datamorphism

public TestCase<TwoD, Colour> leftward(TestCase<TwoD, Colour> seed){
TestCase<TwoD, Colour> mutant = new TestCase<TwoD,Colour>();
TwoD point = new TwoD(seed.input.x-0.2, seed.input.y);
mutant.input = point;
return mutant;

}

@Datamorphism

public TestCase<TwoD, Colour> rightward(TestCase<TwoD, Colour> seed){
TestCase<TwoD, Colour> mutant = new TestCase<TwoD,Colour>();
TwoD point = new TwoD(seed.input.x+0.2, seed.input.y);
mutant.input = point;
return mutant;

@Datamorphism
public TestCase<TwoD, Colour> mid(TestCase<TwoD, Colour> x1,
TestCase<TwoD, Colour> x2){
TestCase<TwoD, Colour> mutant = new TestCase<TwoD, Colour>();
TwoD point = new TwoD((x1.input.x + x2.input.x)/2,
(x1.input.y + x2.input.y)/2);
mutant.input = point;
return mutant;

Figure 2: Datamorphisms of the Running Example
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The following theorem states that W is approximately complete.

Theorem 2. The set Wi of datamorphisms is approximately complete for a continuous numerical
feature based classifier P defined on the data space D = Dy X --- X Dg, K > 0.
Proof. We prove that for any given pointsa = {ay,---,ax),b =(b1,---,bx) € D and 6 > 0, we
can construct a composition ¢ of datamorphisms such that ||b, p(a)||g < 6. The composition ¢(x) is
defined as follows.

P(x) =m™ oud|' o---oud(x)), 7)

where

. . up"i(x ifa; > b;
m(x) = midg(b,x),  ud]’(x) :{ dglwgﬂ’)(x) i;a' <bi '

i—bi
ni=L|a |

L ng= wn<§ﬂ, c=

l

Note that ud;(x) is either up;(x) or down;(x) depending on whether the i’ th element of a is
greater than the i’ th element of b.

Leta’ = ud)' o---oudi(x) = <a’1, e a}<>. We have that a’ is obtained by applying ud;(x)
forn; timesona, fori = 1,---, K. Thei'th element of a’ will be a; = a; + n; - ¢; by the definition
of datamorphisms up;(x) and down;(x). By the definition of n;, we have that |b; — a| < c;, for all
i=1,---,K. Therefore,

K K
b, a’|| = JZ (bi —a))* < JZC? =c.
n=1 n=1

Applying m(x) on a’ for n times, we get a’’ = m"(a’). By Lemma 1(4), we have that ||b,a”|| =
lb,a’|l/2" < c/2". Therefore, when n > In(%), we have that ||b,a”|| < 6. The theorem follows
immediately that ns = [In(5)] > In(5). )

Example 3. The exploratory test system given in Example 2 is approximately complete, because
for all points a, b in the data space and 6 > 0, we have a composition ¢(x) of datamorphisms
such that ||b, ¢(a)ll < 6; see Figure 3 for an illustration of how to construct the composition of
datamorphisms. a

3.4. Discrete Non-Numerical Classifiers.

If the classifier P is a discrete non-numerical feature based classifier then for each i =
1,---,K, D; is a non-empty finite set. Let D; = {v;1,vi2, -, Vipn}, Where n; > 0. We define
two unary datamorphisms up;(x) and down;(x) as the traversal methods as follows.

vijqq1 ifx;=vjand j<mn
Mpi(<X1,'--,xK>)=<X1,---,X,'-,---,x1<),Wherex§={ AR ! (8)
Vin, if x; = vig,
_ , , _J vij1 ifxi=v;and j> 1
down({xj, -+, xg)) = {Xi, -+, X[, -+, Xg ) , Where xj = { v ifX = v ©)

12



T T T T
a’= up(down,’(a)),
)i a’= mid"(b, a’),

N n=hm%Lc=ﬁg+@

‘a
» X
¢,
Figure 3: Construction of the Walk Path in the Running Example

Let x,y € D, x = {(x1,---,xgyand y = (y1,--+,yk). The distance between x and y, writ-
ten ||x, y||p, is defined as the number of elements in x and y that are different. Let A(x,y) =
(dy,---,dy),0 <k <K, be the sequence of elements in x that are different from the correspond-
ing elements in y. Therefore, we have that ||x, y||p = k.

The following Lemma states that the function ||-,-||p : D X D — N satisfies the conditions

of distance metrics. The proof is straightforward, and thus is omitted for the sake of space.

Lemma 2. The function ||-,+||p : D X D — N defined above satisfies the conditions of distance
metrics. That is, for all x,y,z € D, we have that ||x, x|lp = 0, ||lx,yllp = O, lIx,¥|lp = |y, xllp, and
1, ¥llp + Iy, zllp = I, zllp. o

We now define a binary datamorphism midp(x, y) as the midpoint method as follows.

midD(x’Y) = <Z19”"ZK>’ (10)
where
Xi if Xi =Yi
z=1{ x; if x; # y; and x; is an odd-indexed element in A(x, y) (11)
y; if x; # y; and x; is an even-indexed element in A(x, y)
The following theorem gives some useful special properties of the distance metrics || ||p and
midpoint datamorphism midp on discrete data space. These properties are easy to prove by

using the definitions of the distance function and discrete non-numerical data space. Details
are omitted for the sake of space.

Lemma 3. Forall x,y € D, we have that

x#y=lxylp > L;

- e yllp < K;

midp(x, x) = x;

Al yllp = 1= (mid(x,y) = x) V (midp(x,y) = y);

Ayl > 1= Ix, zllp < llx, yllp Allz, Ylip < lIx, yllp, where z = mid(x, y). o

I N T

Let Wp ={up;(x)|i=1,---,K}U{down;(x) |i=1,---,K} U {midp(x,y)}.
13



Theorem 3. Wp, and the distance metrics ||-, -||p together satisfy the requirements of exploratory
test systems on datamorphisms.

Proof. By Lemma 3(1), 6,, = Minysyeplllx, yllp} = 1. By Lemma 3(5), midp(x, y) and ||x, y||p meet
the condition on the midpoint method given in Equation (1). Thus, the theorem is true. O
The following theorem states that the set of datamorphisms constructed above is complete.

Theorem 4. The set Wy of datamorphisms is complete for a discrete non-numerical feature based
classifier P defined on the data space D = Dy X --- X Dg, K > 0.
Proof. For any given points a,b € D, we construct a composition of datamorphisms ¢(x) such that
¢(a) = b. We define

¢(x) = ud)" o oudif(x), (12)

where

) i ifa; =vi. € D;,b; =v;., €D,, d >
ud™ (x) ={ up;’ (x) ifai = vi, i 9i = Viey i» ARECh = Ca i =lex — ¢l (13)

down(x) ifa; = vi., € Di, bj = vi., € Diand ¢, < ¢4

By (13), ud;(x) is either up;(x) or down;(x) depending on the difference between a and b on the
i'th element, and n; is the distance between the i’ th elements of a and b. By the definitions of up;(x)
and down;(x), we have that ¢(a) = b. Therefore, by Definition 5 of completeness, the theorem is
true. ]

3.5. Discrete Numerical Classifiers

For a discrete numerical classifier, we also define two unary datamorphisms up;(x) and
down;(x) for each feature f; as the traversal methods. The up;(x) datamorphism on feature f; is
defined as follows.

upi({x1,---,xg)) = (X1, -, xj, -+, xg) , where xj = x; + 1. (14)
The datamorphism down;(x) is defined as follows.
downi({xy, -+, Xg)) = (X1, +, X}, -+, Xk ) (15)

. . . —1 ifx; >0
where x; = x; — 1, if the data set D; is the set of integer values; and x; = i 1 X ,
! ! 0 if Xi = 0
if the data set D; is the set of natural numbers.

The midpoint datamorphism midy(x, y) is defined as follows.

. lx1 = 1l lxk — yk|
mldN«xl,’",XK>a<yl,"‘7)’K>):<|. 2 J&”‘?I. 2 J (16)
Now, we define the distance metric ||, -|[y on the data space, as follows.
K
||<X1,'",XK>,(y1,"',yK>||N=Z|)’i—xi| (17)
i=1
Similar to Lemma 2, we can prove that the function ||-,:|[y : D X D — N satisfies the

conditions of distance metrics. The proof is straightforward, and thus is omitted for the sake of
space.
14



Lemma 4. The function ||,-|ly : D X D — N defined above satisfies the condition of distance
metrics. That is, for all x,y,z € D, we have that ||x, x|ly = 0, |lx,ylly = 0, [Ix,¥llxv = Ily, xlln, and
llx, Yl + 11y, zllv > llx, zlly- O

The midpoint datamorphism midy(x, y) and the distance metrics ||x, y||x have the following
properties. Again, they are easy to prove by the definitions of the distance function and discrete
numerical data space. Details are omitted for the sake of space.

Lemma 5. Forall x,y € D, we have that

x#y=|xylly 2 1;

midy(x, x) = x;

N ylly = 1= (midn(x,y) = x) V (midy(x,y) = y);

Nyl > 1= ixzllv < 1z yllv Alle, Yy < 11x, ylly, where z = mid(x, y). O

W N

Let Wy = {upi(x)|i = 1,---,K} U {down;(x) | i = 1,---,K} U {mid(x,y)}. The following
theorem states that the set Wy of datamorphisms constructed above satisfies the conditions
of exploratory test systems. The proof is very similar to that of Theorem 3 so the details are
omitted for the sake of space.

Theorem 5. Wy and the distance metrics ||-, -||y together satisfy the requirements of exploratory
test systems on datamorphisms. O

The following theorem states that the set Wy of datamorphisms constructed above is com-
plete.

Theorem 6. The set Wy of datamorphisms is complete for a discrete numerical feature based
classifier P defined on the data space D = Dy X --- X Dg, K > 0,

Proof. For any given points a, b € D, we construct a composition ¢(x) of datamorphisms such that
¢(a) = b. We define

$(x) = udy! o -+ o udy (v), (18)
where
o _ ) upt(x) ifa; > b; o
Md,' (.X) - { down:li(x) l-](‘ai < bi ’ nl - |al bl| (19)

By (19), ud;(x) is either up;(x) or down;(x) depending on the difference between a and b on
the i’ th element, and n; is the absolute value of the distance between the i’ th elements of a and b.
By the definitions of up;(x) and down;(x), we have that ¢(x) = b. Therefore, by Definition 5 of
completeness, the theorem is true. O

3.6. Hybrid Feature Based Classifiers

Let P : D — C be a hybrid feature based classifier. Without lost of generality, we assume
that D = Dy X-+-XD, XNy X-+-XN,XR; X---XR,,, where Dy, - - -, D, are discrete non-numerical
features, Ny, ---, N, are discrete numerical features, and Ry, - - -, R,, are continuous numerical
features, and at least two of u, v and w are greater than zero.

We now define unary datamorphisms up;(x) and down;(x) as the traversal methods as fol-
lows.

1. If feature f; is discrete non-numerical, we use Equation (8) to define up;(x).
15



2. If feature f; is discrete numerical, we use Equation (14) to define up;(x).
3. If feature f; is continuous numerical, we use Equation (3) to define up;(x).

Similarly, we define down;(x) depending on the type of features and using the Equations
(9), (15) and (4), accordingly.

Before we formally define a binary datamorphism as the midpoint method and a distance
metric, let us first introduce some notation.

Letx ={dy,--,dy,ny,---,n,ry,- -, r, € D. We write xp = {dy,---,dy,), xy ={ng,---,n,),
and xg = (ry,---,r,). We also write x = xp ® xy ® xg. In general, @ is an operator on vectors
defined as follows.

Qers s %) @ V155 Ym) = X105 Xy Y1505 Vi)
Now, we define a binary datamorphism midg(x, x") as follows.
midy(x, x') = midp(xp, X)) ® midy(xn, xy) ® midg(xg, X) (20)
We now define ||, ||z : D X D — R* as follows.
o, Xl = lld, dllp + lln, 0lly + llr, 7l (21)

The following lemma states that the above equation defines a distance metric. It follows
immediately the properties of ||-, “||p, ||, /|ly and ||-, :||g. Details are omitted.

Lemma 6. Function ||-, ||y satisfies the conditions of distance metrics. O

Let Wy = {upi(x)}; U {down;(x)}; U {midy(x)}, where up;(x), down;(x) and midy(x,y) are
defined as above.

Theorem 7. The set of datamorphisms Wy and the distance metrics ||x, yllg together satisfy the
conditions of exploratory test systems.

Proof. First, from the definition of ||x, y||z, we have that §,, = Min,zyeplllx, yllu}. If there is at
least one feature in the data space D that is a continuous numerical feature, then it is easy to
see that 6,, = 0. Otherwise, all features are either discrete non-numerical or discrete numerical
so we have §,, = 1.

Second, let x,y € D and ||x, ¥l > 6, and z = midy(x,y). By the definitions of midy(x,y)
and ||x, y||y, we have that

lx, zllz = llxp, zpllp + XN, 2nllv + l1xE, 2ElE
= |lxp, midp(xp,yp)llp + llxn, midn(xn, yw)llv + l1xg, mide(xg, ye)lle
<|lxp,¥pllp + llxn, ynlln + lIxg, YElE

= |lx, ylla
Similarly, we have ||y, z||z < ||x, yl|g. Therefore, the theorem is true. O

Theorem 8. Let P be a hybrid feature based classifier, and Wy be the set of datamorphisms defined
above.
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1. If there is a continuous numerical feature in the data space of P, Wy is approximately com-
plete.

2. If there is no continuous numerical feature in the data space of P, the set Wy of datamor-
phisms is complete.

Proof.

Similar to the proofs of Theorem 4, 6 and 2, for any given points a and b in the data space,
and any given real number ¢ > 0, we construct a composition ¢(x) of datamorphisms such that
b, p(@)llr < 6.

Leta=ap®ay®agand b = bp ® by @ bg.

By the proof of Theorem 4, there is a composition of datamorphisms ¢p(x) such that bp =
éplap).

By the Theorem 6, there is a composition ¢y (x) of datamorphisms such that b, = ¢y(ay).

By Theorem 2, there is a composition ¢g(x) of datamorphisms such that ||bg, ¢pe(ag)|| < 6.

By the definition of the datamorphisms for hybrid feature based classifier, ¢p(x), dn(x) and
¢e(x) are also compositions of the datamorphisms in Wy. Therefore, ¢(x) = ¢r 0 pydp(x) is a
composition of datamorphisms in Wpy.

Let a’ = ¢(a). It is easy to see that ¢(a) = ¢pplap) ® dpn(an) ® de(ag). Therefore,

b, 'l = 11b, (@)l
= |lbp ® by @ be, ¢p(ap) ® ¢n(ay) ® delap)llu
= |lbp, éplap)llp + b, pn(am)lly + 1bg, peap)lle
=0+0+|lbg,pe(ap)lle <6

Therefore, statement (2) of the theorem is true.
If there is no continuous numerical feature in the data space, i.e. bg and ag are empty, then
1bE, de(ap)lle = 0. Therefore, in such a case, statement (1) is true. O

4. Exploration Strategies

This section presents the algorithms of three different exploratory strategies for testing
clustering and classification applications. We also prove their correctness and illustrate their
behaviour by using the running example given in the previous section.

4.1. Random Target Strategy

Let’s start with a simple exploration strategy based on random selection of two test cases
in order to find the Pareto front of the classification groups between these two test cases. We
call this strategy random target strategy.

The strategy starts by selecting a pair of two test cases x and y at random. If the outputs
of the program P under test on these test cases are different, i.e. P(x) # P(y), then a point
z1 between x and y is generated by using the binary datamorphism of the midpoint method
mid(x,y), i.e. 71 = mid(x,y). The program P is executed on this mutant test case z; to classify
it. The classification of z; must be different from one of the original pair of test cases; say
P(z1) # P(x). Thus, we can repeat the above steps with x and z; as the pair of test cases, and a
further mutant z, can be generated. This process is repeated a number of times to ensure the
distance between the final pair of points is small enough. See Algorithm 1.
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Algorithm 1 (Random Target Strategy)

Input: testSet: Test Pool; steps: Integer; mid(x,y): Binary datamorphism;
Output: q, b: Test Case;
Begin
1: Select two different test cases x and y in testS et at random;
2: Execute program P on test cases x and y;
3: Check if a pair of the Pareto front exists between x to y:
if (x.output = y.output) then return (null, null)
end if
4: Refinement:
for i « 1 to steps do
z = mid(x,y);
if (x.output # z.output) then y =z
else x = z;
end if
end for;
a=x;b=y;
return (a, b);
End

Let n > 0 be any given natural number. We write RT(n) = (a, b) to denote the results of
executing Algorithm 1 with n as the parameter steps and (a, b) as the output.
Assume that the exploratory test system has the following properties.

1. There is a constant ¢ > 1 such that

Vx,y € D. < 1/e, (22)
[, Il
where z = mid(x, y).
2. There is a constant d,,, > 0 such that
Yx,y € D.(|lx, Yl < d). (23)

Then, we have the following theorem about the correctness of the random target strategy
algorithm.

Theorem 9. IfRT(n) = {a, by # (null, null), then {a, b) is a pair in the Pareto front according to
P with respect to |-, || and 6, ifd,, /" < 6.

Proof. If RT (n) = (a, b) # (null, null) then the condition of the If-statement in step (3) is false.
Thus, the loop is executed. It is easy to see that the For-loop in Step 4 in the algorithm terminates.

We now prove that the following is a loop invariant by induction on the number i of itera-
tions of the loop body.

dm
llx, yll < = NP = P(G).

When entering the loop, by assumption (23), the distance between the data points stored in
variable x and y satisfies the following inequality.

e, Yl < dy
18



Since the condition of the If-statement is false, we have that
P(x) = x.output # y.output = P(y).

Therefore, the loop invariant is true for i = 0.

Assume that the loop invariant is true for i = n > 0.

After the execution of the loop body one more time (i.e. i = n + 1), by applying the Hoare
logic of the If-statements in the loop body, the distance d’, between the data points stored in
variables x and y will become either ||x, || or ||z, yll, where z = mid(x, y). By assumption (22), in
both cases we have that

d, < Max{||x, zll, llz, ylI} < llx,yll/c < /™.

By the condition of the If-statement in the loop body and the property (2), applying Hoare logic
we have that, after the execution of the loop body, the data points stored in variables x and y
have the property that P(x) # P(y). Therefore, the condition is a loop invariant according to
Hoare logic.

When the loop exits, i = steps = n. By Hoare logic, after executing the assignment state-
ments @ = x and b = y, we have that

lla, bll < dn/c" A P(a) # P(D).

Therefore, the theorem is true by Definition 1. O
The algorithm of random target strategy can be run multiple times to generate a number of
pairs for the Pareto front.

Example 4. For example, applying the random target strategy to the running example, we can
obtain a test set shown in Figure 4 when 1000 pairs of test cases are selected at random from a test
set of 300 random test cases. A total of 641 pairs of Pareto front test cases were generated. The
success rate in generating a pair for the Pareto front is 64.1%. The set of Pareto front pairs shows
clearly the boundary between the subdomains classified by the software.

Figure 4: Pareto Front Generated by Random Target

In this example, the number of steps n is 20. Since the data space D = [0, 2] X [-1, 1], if the
distance function ||x, || is Eucl(x,y), we have that d,, = 2 Vr? + 1. By the definition of mid(x, y),
we have that

Max({llx, zll, Ily, zIlH)
llx, yli
So, ¢ = 2. By Theorem 9, for the distance 6 between each pair in the Pareto front, we have that
dn, 2+ 1

6 — =
20 219

=1/2.

Note that the pairs of test cases in the Pareto front are so close together that they are visually
indistinguishable. a
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4.2. Directed Walk Strategy

A variation of the random target strategy is to start with one test case (rather than a pair)
and apply a unary datamorphism repeatedly until a test case of different classification is found.
Then, the Pareto front between these two test cases is searched for in the same way as for the
random target strategy. In this strategy, the unary datamorphism (i.e. a mutation operator) is
the traversal method. The repeated application of the mutation operator makes a ‘walk’ in one
direction until a test case in a different class is found or too many iterations have been carried
out and the exploration has gone too far.

Algorithm 2 (Directed Walk)

Input: TestSet: test set; walkDistance: integer; steps: Integer;
d(x): Unary datamorphism; mid(x, y): Binary datamorphism;
Output: a, b: Test Case;
Begin
1: Select a test cases x in testS et at random;
2: Execute program P on test case x;
3: Walk in one direction as follows:
Bool found = false;
for i « 1 to walkingDistance do
y =d(x);
Execute software on test case Vs
if (x.output # y.output) then found = true; break;
else x = y;
end if
end for
4: Check if a Pareto front can be found:
if (- found) then return (null, null);
end if
5: Refinement:
for i « 1 to steps do

z = mid(x,y);
if (x.output # z.ouptut) then y = z;
else x = z;
end if;
end for
a=x;b=y;
return {(a, b);

End

Note that, a walk in one direction may not be able to find a data point in a different class.
In that case, the algorithm returns (null, null). Let m,n > 0 be any given natural numbers. We
write DW(m,n) = (a, b) to denote the results of executing Algorithm 2 with m as the walking
distance and n as the number of steps and (a, b) as the output. Assume that the exploratory
test system satisfies assumption (22) and has the following property.

There is a constant d; > 0 such that

VYx e D.(||lx,dX)| < dy) . (24)

where d; is called the step size of the traversal method d(x). Then, we have the following
correctness theorem for the directed walk algorithm.
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Theorem 10. IfDW(m,n) = {a, b) # (null, null) then (a, b) is a pair in the Pareto front according
to P with respect to||-,-|| and 6, if ds/c" < 6, where n is the number of steps.

Proof. If DW(m,n) = {a,b) # (null,null), then the condition of the If-statement in step (4) is
false. Thus, the For-loop of Step (5) is executed. It is easy to see that the For-loop in Step 5
Refinement in the algorithm terminates.

Similar to the proof of Theorem 9, by the definiton of d; and assumption (24), the following
is a loop invariant of the loop by induction on the number i of iterations of the loop body.

ds
llx, ¥l < P P(x) # P(y).

When the loop exits, i = steps = n. By Hoare logic, after executing the assignment state-
ments @ = x and b = y, we have that

lla, bl| < dg/c* A P(a) + P(b).
Therefore, the theorem is true by Definition 1. O

Example 5. For example, starting from 1000 random test cases using the directed walk strategy
with the upward(x) datamorphism as the unary traversal method, a set of 161 Pareto front pairs
were generated; shown in Figure 5. The set of Pareto front pairs also shows clearly parts of the
boundaries between classes. The success rate of finding a pair of Pareto front on one test case is
16.1%.

In this example, the number n of steps is also 20. By the definition of upward(x) traversal
method, we have that d; = 0.2, if the distance function ||x, y|| is Eucl(x,y). As in Example 4, by the
definition of mid(x,y), we have that ¢ = 2. By Theorem 10, for the distance 6 between each Pareto

front pair, we have that
dy 1
0< CE =0.2X% ﬁ
Again, the distance between the test cases in each Pareto front pair is so small that they are not
visually distinguishable, so they appear as one dot in Figure 5. O

Figure 5: Pareto Fronts Generated by Directed Walk

4.3. Random Walk Strategy

If multiple traversal methods are available, a random walk can be performed by selecting
the direction of the next step at random. This is similar to the random walk testing in a web
GUI hyperlink test. The algorithm is given below.
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Algorithm 3 (Random Walk Strategy)

Input: testSet: Test Set; walkingDistance: Integer; steps: Integer;
dy(x),- -, dy(x): Unary datamorphism (k > 1); mid(x, y): Binary datamorphism;
Output: a, b: Test Case;
Begin
1: Select a test case x in festS et at random;
2: Execute program P on test case x;
3: Walking at random to search for test case in a different class:
Bool found = false;
for i « 1 to walkingDistance do
Get a random integer r in the range [1, k]
y =d;(x);
Execute program P on test case y;
if (x.output # y.output) then found = true; break;
else x=y;
end if
end for
4: Check if a Pareto front can be found:
if (= found) then return (null, null);
end if
5: Refinement:
for i « 1 to steps do
z = mid(x,y);
if (x.output # z.ouptut) then y = z;
else x = z;
end if
end for
a=xb=y;
return {(a, b);
End

We write RW(m,n) = {(a, b) to denote the results of executing Algorithm 3 with m as the
walking distance and n as the steps and (a, b) as the output. Assume that the exploratory test
system satisfies assumption (22) and has the following property. There is a constant d, > 0
such that

Vx € DNd; € WA|x, di(x)l| < dyn). (25)

where d,, is called the maximal step size of the traversal methods d;(x) € W. Then, we have
the following correctness theorem for the algorithm of random walk strategy.

Theorem 11. IfRW(m,n) = {(a, by # (null, null) then {(a, b) is a Pareto front pair according to P
with respect to ||, || and 6, if dy, /c" < O, where n is the number of steps.

Proof. If RW(m,n) = {(a,b) # (null, null) then the condition of the If-statement in step (4) is
false. Thus, the For-loop of Step (5) is executed. It is easy to see that the For-loop in Step 5
Refinement in the algorithm terminates.
Similar to the proof of Theorem 9, by the definition of dj,, and assumption (25), we can prove
that the following is a loop invariant of the loop by induction on the number i of iterations of
22



the loop body.

S

= A P(x) # P(y).

eyl < =

When the loop exits, i = steps = n. After executing the assignment statements a = x and
b =y, the following is true by Hoare logic.

lla, bll < dgu/c" N P(a) # P(D).
Therefore, the theorem is true by Definition 1. O

Example 6. For example, by applying the random walk strategy on a test set containing 300
random test cases, 1000 random walks generated 805 pairs of Pareto front test cases, as shown in
Figure 6, where the walking distance was 20 steps.

Figure 6: The Pareto Fronts Generated by Random Walk

In this example, the number n of steps is also 20. By the definition of upward(x), downward(x),
leftward(x) and rightward(x) traversal methods, we have that d; = 0.2, if the distance function
lx, Il is Eucl(x,y). As in Example 4 and 5, by the definition of mid(x,y), we have that c = 2. By
Theorem 11, the distance & between each pair in the Pareto front satisfies the following inequality.

d, 1
TO:O'ZX_

o< - -

5. Empirical Evaluation

We have conducted empirical evaluations of the proposed test strategies to determine their
practical applicability for detecting borders between subdomains. In particular, we answer the
following two research questions:

o RQ1: Capability. Are the exploratory strategies capable of discovering the borders be-
tween subdomains?

e RQ2: Cost. Are the exploratory strategies costly for discovering the borders between
subdomains?

Capability is the probability of a test strategy returning a Pareto front pair when executed.
The expected size of a Pareto front set produced by a strategy can then be calculated as C,, x W
pairs, where C,, is the strategy’s capability for testing classifier m and W is the number of
invocations of the strategy, called the number of walks in the sequel.

Cost is related to the amount of computational resources needed to find a Pareto pair. We
measure the cost using the average number of test executions of the classifier for discovering
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each Pareto pair, since the specific time and storage space depends on the classifier. Note that the
strategies do not require manual labelling of the test cases or any form of test oracle. Therefore,
the time taken to complete the testing process can be estimated as

Time =W XCy XE,; Xs (26)

where C,, and E,, denotes the strategy’s capability and cost for testing the model m, and W is
the number of walks and s the average time taken by each invocation of the classifier.

We have conducted two empirical evaluations of the proposed test strategies. The first is
a set of controlled experiments with 10 hand-coded classifiers on two-dimensional continuous
numerical features. The second is a set of case studies with 16 machine learning models built
by training on three real-world datasets. Both evaluations were conducted using the automated
datamorphic testing tool Morphy. The raw data collected, source code of the test systems, test
scripts, etc. are all available on GitHub repository together with the executable code of the
automated testing tool Morphy for download.  Summary data can be found in the Appendix.
This section reports the results of these empirical studies.

5.1. Controlled Experiments

5.1.1. Design and Conduct of the Experiments

The goal of the controlled experiments is to study the factors that affect the cost and capa-
bility of these test strategies in finding Pareto front pairs between subdomains. In doing so, we
demonstrate that Pareto front pairs can represent borders between subdomains; the aim is not
to compare the strategies, however.

The experiments are carried out with the ten classifiers shown in Figure 7. These classifiers
are all on the same input domain of two-dimensional real numbers in the range of [0, 27] X
[-1,1]. As shown in Figure 7, they are continuous numerical feature based classifiers.

The choice of the subjects enables us to visually display the Pareto fronts obtained from
executing the test strategies so that we can verify the results against the theoretical borders
between the subdomains. This has been done visually for a large number of random samples
taken from the Pareto fronts and all have been found to be correct. For example, Figure 7 shows
some example screen snapshots of the visualisations of these test results. Each figure contains
both the random test cases from which the starting points were selected and the test cases
generated through testing. Figures 4, 5 and 6 contain only the latter.

In addition to the visual validation of the outputs of the tests, the strategies are executed
repeatedly 10 times for each number of walks. The number of executions of the classifiers and
the number of mutants generated were collected for statistical analysis of the capability and
cost of the strategies. The following subsections reports this analysis.

5.1.2. Main Results
« Results of experiments with the directed walk strategy

The controlled experiments on the directed walk strategy consisted of randomly selecting a
number of test cases from the uniform distribution and walking 20 steps in one direction using
the upward datamorphism. Both the average number of test executions of the subject program

!The URL of the GitHub repository is https://github.com/hongzhu6129/ExploratoryTestALgit
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Figure 7: Illustration of the sample applications

under test and the average number of mutant test cases generated (i.e. the number of Pareto
front pairs) are recorded.

The experimental data shows that the number of mutant test cases generated with the di-
rected walk strategy increases linearly with the number of walks; see Figure 8. Similarly, the
number of test executions is also linear with respect to the number of walks. In Figure 8, the x-
axis is the number of random seed test cases, which equals the number of walks, and the y-axes
of (a) and (b) are the average numbers of test executions and mutant test cases, respectively.
In (a), the average numbers of test executions on various subject programs are so close to each
other that they are not visually separable. The y-axis of (c) measures the average cost as the
number of test executions per test case in the generated Pareto front. We can see that this is
fairly invariant for each subject as the former ranges from 200 to 1200. Similarly, (d) shows the
average capability remains invariant when the number of walks increases.

« Results of experiments with the random walk strategy

The random walk strategy is parameterised by the number of seed test cases and the number
of walks starting from them. So, we fix the first parameter at 200 seeds and vary the number of
walks, and then we fix the second parameter at 800 walks and vary the number of seeds. Figure
9 shows the results of the first set of experiments with the random walk strategy. Figure 9(a)
and (b) clearly shows that the number of runs and the size of Pareto fronts increase linearly
with the number of walks, while the cost and capability remains mostly invariant as shown in
(c) and (d).

Similarly, Figure 10(a) and (b) shows that the number of runs increases slightly as the num-
ber of seed test cases increases, while the size of generated Pareto front remains almost invari-
ant. Moreover, the cost and the capability remain almost invariant as the number of seed test
cases increases as shown in Figure 10(c) and (d), respectively.

« Results of the experiments with the random target strategy
25
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(a) Average Number of Runs (b) Average Number of Mutants

(c) Average Cost
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Figure 10: Results of the Random Walk Strategy with Variable Number of Seeds

The random target strategy only has one parameter: the number of pairs of test cases se-
lected at random. The experiments are conducted with this parameter ranging from 200 to 1200.
The results, as shown in Figure 11(a) and (b), are that the average number of test executions
and the average size of generated Pareto front are linear in the number of walks for all subject
programs. The test cost, as shown in Figure 11(c), increases slightly with the number of walks
since the average number of test executions needed to generate a test case in the Pareto front
decreases as the number of walks increases. However, the capability remains invariant with
the number of walks as shown in (d).
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Figure 11: Results of the Random Target Strategy

5.1.3. Discussion

From the experiments, we observed the following phenomena in addition to the results
stated above.

27



o Factors influencing cost and capability

The test cost of the strategies on various subject programs are summarised in Table 1 and
depicted in Figure 12, where larger numbers indicate higher test cost.

Table 1: Summary of Test Cost and Capability

Subject Directed Walk Random Walk | Random Target
Cost Cap Cost Cap Cost Cap
Box 1 323.45 50.53 52.46 20.72 11.49 12.69
Box 2 93.85 50.53 22.83 51.59 10.38 50.53
Circle 1 247.32 20.67 42.59 26.03 10.93 21.49
Circle 2 105.82 47.32 25.50 46.01 10.41 48.31
Line 1 105.82 49.15 29.02 40.13 10.41 48.25
Line 2 55.76 58.03 23.94 48.56 10.33 58.40
Sin 1 122.35 50.10 20.65 45.51 10.38 49.76
Sin 2 64.75 62.34 26.03 60.54 10.31 61.76
Triangle 1 370.38 7.62 66.79 16.06 12.46 8.33
Triangle 2 93.19 46.96 23.98 49.08 10.41 47.01
Avg 158.27 44.32 33.38 40.46 10.75 40.65
a0 Cost o Capability
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Figure 12: Test Cost and Capability on Subject Programs

The data show that for each strategy, the test cost and capability vary significantly according
to the subject programs. However, for each strategy, test cost and capability of Box 1 are lower
than Box 2, Circle 1 is lower than Circle 2, and so on. This phenomenon is not a coincidence.

From the theorems given in Section 4, we can see that the capability for the directed walk
strategy is determined by the probability that there is a border between two subdomains in the
right direction from a test case and within the walking distance. For the random target strategy,
it is determined by the probability that two random test cases fall in two different subdomains,
and for the random walk strategy, it is determined by the probability that there is a border near
to a randomly selected test case. For test cost, the more Pareto front pairs found, the more runs
of the classifier will be to refine the pairs of test cases in order to reduce the distance between
each pair.

Two implications follow from these properties. First of all, given a classification application,
one should select the most cost efficient strategy to explore the Pareto fronts between subdo-
mains based on the understanding of the application. The data obtained from our experiments
are not sufficient to compare the strategies on their cost. This is because the probability of find-
ing a pair in the Pareto front heavily depends on the size and location of the subdomains of
the classification application. Our subjects in the experiments may not be representative of the
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distribution of the parameters in real applications. Secondly, we now have an explanation why
the number of pairs generated for the Pareto front is a linear function of the number of walks
since the results of a walk is independent of the results of its predecessors.

Moreover, although the cost is mostly determined by the size, shape and location of the
subdomains that the program classifies, for directed walk and random walk strategies, it is also
affected by the number of steps walked and the number of iterations in the refinement. The
number of steps walked influences the probability of finding two points in different subdo-
mains and also the total number of test executions. The longer the walk, the more likely one
is to find two points in different subdomains, but this requires more test executions. Thus, a
balance between these two contradictory factors of cost must be made to achieve the best test
effectiveness.

Finally, the number of iterations in the refinement loop controls the distance between the
pairs of test cases in the Pareto fronts generated. It has no impact on capability, i.e. the proba-
bility of finding two data points in different subdomains, but it does have an effect on test cost.
The shorter distance requires more iterations, and thus more test executions, and therefore, it
is more costly. For random walk and directed walk strategies, the number of iterations can be
selected according to the formula given in the correctness theorems given in Section 4. For the
random target strategy, usually more iterations are required than the other two strategies.

« Validity of the experiments

As pointed out at the beginning of the section, the experiments are designed to determine
which factors have an effect on the capability and cost of the strategies. The subject programs
used in the controlled experiments are manually coded by the authors. They have been de-
signed in such a way that their subdomains are of typical shapes in data mining and machine
learning applications (Aggarwal, 2015; Mohri et al., 2012; Shalev-Shwartz and Ben-David, 2014).
As discussed above, they provide insight into the factors that affect capability and cost.

The manual examinations of the Pareto fronts generated by the test strategies confirmed that
they are indeed test cases very close to the borders of subdomains. The phenomena observed
from the experiments is consistent with the predictions made from the theorems. However, the
specific data about cost and capability obtained from the experiments depends on the specific
features of the subdomains such as their sizes and locations. Therefore, the experiment data
do not answer the question whether the test strategies are applicable to testing real machine
learning applications. This issue is addressed in the case studies reported in the next subsection.

5.2. Case Studies

This subsection reports a set of case studies with the exploratory testing of machine learning
and data analytics applications using the test strategies.

5.2.1. Design and Conduct of the Case Studies
The procedure for the case study consists of the following steps:

1. Select sample applications of classifiers.
2. For each selected sample,
(a) Download the dataset.
(b) Construct classifiers by applying machine learning techniques on the dataset.
(c) Develop test system according to the specification of the test systems defined in
Section 3.
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(d) Write test scripts in Morphy’s test scripting language for repeated executions of the

experiments and collection of data.
(e) Execute test strategies on the test classifiers by running the test scripts.

The following describes each step in detail.
o Sample datasets

The following three datasets were selected at random from the well-known Kaggle collec-
tion of datasets for machine learning and data analytics applications. They were as follows:

(1) Red Wine Quality. This dataset concerns red varieties of the Portuguese “Vinho Verde” wine
(Cortez et al., 2009). There are 11 physicochemical variables as inputs (i.e. there is no data
about grape types, wine brand, wine selling price, etc.) and the output is a classification
of wine quality as a number from 1 to 10. The classes are ordered but not balanced in that
there are many more normal wines than excellent or poor ones.

(2) Mushroom Edibility. This dataset concerns hypothetical samples of 23 species of gilled
mushrooms in the Agaricus and Lepiota family drawn from The Audubon Society Field
Guide to North American Mushrooms Society (1981). Each species is identified as defi-
nitely edible, definitely poisonous, or of unknown edibility and not recommended. This
latter class was combined with the poisonous one in the dataset. The Guide clearly states
that there is no simple rule for determining the edibility of a mushroom, i.e. no rule like
“leaflets three, let it be” for poison oak and poison ivy. The dataset has been available to
researchers on data mining and machine learning for 30 years.

(3) Bank Churners. This dataset concerns credit card customers and can be used to predict
churners, who are bank customers who leave the credit card service. It consists of more
than 10,000 real data items with 19 features about customer’s age, salary, marital status,
credit card limit, credit card category, etc. It is, however, considered to be a difficult task
to train a model to predict churning customers.

All three datasets are available from the Kaggle repository 2 * *. The first two datasets are
commonly used in research on machine learning and data analytics to determine which phys-
iochemical properties make a wine good and which features are most indicative of a poisonous
mushroom, respectively. As well as Kaggle, they can also be found at the UCI machine learning
repository. > ® The Bank Churners dataset originates from a LEAPS website 7, which specialises
in application of data analytics and machine learning techniques to solve business problems.

Table 2 summarises the datasets used in the case study. The column Records gives the num-
ber of records in the dataset and Classes is the number of classes (subdomains) in the classifi-
cation. Columns DF, NF and CF are the numbers of discrete non-numerical features, discrete
numerical features and continuous numerical features, respectively. The column Features shows
the total number of features. We can see that the dataset Red Wine Quality is a continuous nu-
merical data space, whereas the dataset Mushroom Edibility is a discrete non-numerical data
space, and the Bank Churners dataset is a hybrid data space.

2https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009
Shttps://www.kaggle.com/uciml/mushroom-classification
*https://www.kaggle.com/sakshigoyal7/credit-card-customers
Shttps://archive.ics.uci.edu/ml/datasets/wine+quality
Shttps://archive.ics.uci.edu/ml/datasets/Mushroom
"https://leaps.analyttica.com/home
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Table 2: Summary of Datasets

Dataset Records | Classes | DF | NF | CF | Features
Red Wine Quality 1599 3 0| o | 11 11
Mushroom Edibility 8124 2 22 0 0 22
Bank Churners 10127 2 5 11 3 19

« Construction of machine learning models

Since the goal of the case study is to demonstrate that our test strategies are applicable
to real machine learning applications, we have used the datasets to train models that use a
wide variety of machine learning techniques. This enables us to demonstrate that our testing
techniques are effective on both low-quality and high-quality models as well as on different
types of models.

The training consists of executing a Python program, adapted from code posted on the
Kaggle website and selected at random again. For each dataset, we build 16 different models,
as shown in Table 3. The Python programs for training and invoking the models as well as all
datasets used in the case study can be found on the project’s GitHub repository; see Footnote
1 for the URL.

Table 3: Machine Learning Models Constructed for Each Dataset

Name | Type Details

LR Logistic Regression Trained on whole data set

LR2 Logistic Regression Used train-test 90-10 split

KNN K-Nearest Neighbors Trained on whole data set

KNN2 K-Nearest Neighbors Used train-test 90-10 split

DT Decision Tree Trained on whole data set

DT2 Decision Tree Used train-test 90-10 split

NB Naive Bayes Trained on whole data set

NB2 Naive Bayes Used train-test 90-10 split

SVM Surportting vector machine | Trained on whole data set

SVM2 Surportting vector machine | Used train-test 90-10 split

SV Ensemble via Soft voting Trained on whole data set; LR+KNN+DT

SV2 Ensemable via Soft Voting Used train-test 90-10 split; LR+KNN+DT

HV Ensemble via Hard Voting Trained on whole data set; LR+KNN+DT

HV2 Ensemble via Hard Voting Used train-test 90-10 split; LR+KNN+DT

Stackl | Ensemble via Stacking Used train-test 90-10 split; KNN as Meta; LR2+KNN2+DT2+HV2
Stack3 | Ensemble via Stacking Used train-test 90-10 split; LR as Meta; KNN2+DT+SV2+HV2

A total of 48 models were constructed. Their accuracy varies from 49.9% to 100%; see Ap-
pendix B.1 for details. It is worth noting that no effort was spent to construct a model of high
quality because the purpose of the experiment is to determine if the strategies are capable and
cost efficient for models of all different kinds of quality.

« Development of test systems

The test system for the Red Wine Quality dataset was a straightforward implementation
of the appropriate algorithm in Section 3 and the code for the experiments was a clone of the
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code written for Section 5.1. The main difference in the test system is that the executions are
performed by invoking programs in Python through executing test morphisms in Java.

The test system for Mushroom Edibility was made by refactoring the test system for Red
Wine Quality to make the code common to both ready for reuse. Once again, the datamorphisms
were a straightforward implementation of the definitions in Section 3. Similarly, the test system
for Bank Churners prediction is again a straightforward implementation of the algorithms given
in Section 3.

« Executions of test strategies

As with the controlled experiments in Section 5.1, the test strategies are applied to each
classifier to generate the Pareto fronts and the same kinds of data are collected from their exe-
cutions.

In particular, both the random target and random walk test strategies were executed with
varying numbers of walks (10 times in each case) ranging from 100 to 1000 in order to calcu-
late the average number of mutant test cases generated, i.e. the number of test cases in the
generated Pareto front. The directed walk strategy was executed with starting points of 100,
200, ..., 1000 test cases selected at random from the original dataset on all directions (i.e. each
unary datamorphism) for 10 times; the average of these directions was calculated for each of
the models.

The repeated executions of the test strategies were conducted by invoking test scripts writ-
ten in Morphy’s test scripting facility. The test scripts can be found in the GitHub repository.

5.2.2. Main Results
« Numbers of runs and mutants

The case studies clearly show that for all machine learning models, the average numbers
of runs of the model increase linearly with the number of walks made when executing the test
strategies. Figure 13 shows some typical examples.
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Figure 13: Variation of the Number of Runs with the Number of Walks

Similarly, the average numbers of mutant test cases (i.e. the points in Pareto fronts generated
by strategies) increase linearly with the number of walks from 100 to 1000. Again, this is for all
machine learning models. Three typical examples are shown in Figure 14.

The data of the case studies confirmed the observations made in the controlled experiments.

« Capability of discovering borders
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Figure 14: Variation of The Number of Mutants with the Number of Walks

_—— . s — . — —_——

ety =
e e e —
(a) Random Target on Red Wine (b) Random Walk on Mushroom (c) Directed Walk on Bank

Figure 15: Variation of Capability with the Number of Walks

The capability of each test strategy in discovering border points for each machine model,
measured as the probability of finding a border point via a walk, remains invariant in the num-
ber of walks as shown in Figure 15. However, the capability varies significantly over different
machine learning models; see Figure 16.

o Cost

As was seen with the controlled experiments in Section 5.1, the case studies show that the
cost of the strategies was mostly invariant as the number of walks increases; see Figure 17 for
some typical examples. The cost for each model is shown in Figure 18.

5.2.3. Discussion
« Answers to the research questions.

From the data collected from the case studies, we can draw the following conclusions.

First, the data of the case study are consistent with the observations made in the controlled
experiments that both capability and cost of the strategies heavily depends on the model under
test, but is invariant in the number of walks. In other words, both cost and capability are
constants that only vary with the model under test.

Second, the strategies are capable of discovering borders between subdomains. The overall
average of the capabilities of all three strategies is 34.48%. The average capabilities of the di-
rected walk, random target and random walk strategies over three subjects are 21.86%, 31.47%
and 50.10%, respectively. The highest capability reached was 62.83% in testing bank churner
prediction using the random walk strategy. The average capabilities are almost all above 25%
except that the average capability of testing mushroom edibility models using the directed walk
strategy is only 4.10%. Table 4 shows the maximal, minimal, and the average capability and cost
of the test strategies over different models.?

8When no Pareto Front is found, the cost is infinite. In such cases, the numbers given in Table 4 for the maximal,
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Figure 17: Variations of Cost with Numbers of Walks

Third, the case study also clearly demonstrated that applying exploratory strategies is cost
efficient for discovering borders between classes; also see Table 4. The overall average cost
of three strategies over all subjects is 26.32, which means that on average one would detect a
border point by executing the machine learning model on about 27 test cases. In other words,
within a fraction of second, a large number of border points can be found by applying these
exploratory test strategies. The best cost efficiency was achieved in the testing of mushroom
edibility models using the random target strategy, where the average cost over 16 models is
6.23. In contrast, the worst cost of 92.01 is observed also when testing mushroom edibility but
using the random walk strategy.

Fourth, comparing with the data of the controlled experiments, we observed that the costs
and capabilities of the strategies in the case study are compatible to those of controlled ex-
periments, although the dimensions of the input data spaces of the real-world examples are
significantly larger than those coded classifiers. This indicates that the approach is scalable to
high dimensional data spaces.

Moreover, the data of the case study provides some useful hint for the choice of strategies
when testing a machine learning application. The data show that on average, the random walk
strategy is the most capable in detecting borders. However, the walk may require many steps to
find a border point. Thus, it could be slightly less cost efficient than the random target strategy
in many cases. For the directed walk strategy, searching for borders in all directions is very
much like a brute force search. Thus, it could be of higher cost in general.

Finally, in the case study, we observed a few cases where exploratory strategies performed
poorly. These cases provide some insight for how to choose from the proposed strategies.

Among the worst capabilities observed in the case studies is that of the directed walk strat-
egy which performed poorly on testing mushroom edibility with an average capability of 4.10%
over 16 models. The reason why directed walk performed poorly on testing mushroom edibility

minimal and average cost have been calculated by excluding the infinite.
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Figure 18: Cost of Testing Different ML Models

Table 4: Summary of the Capability and Cost of the Strategies

Strategy Subject - Cost F:apabll|ty
Max Min Avg StDev Max Min Avg StDev
Red Wine Quality 63.03 14.12 25.70 0.15 62.89 8.79 35.74 0.24]
Directed Walk Mushroom Edibility 32.63 18.90 25.57 0.38] 5.79 0.80 4.10 0.06)
Bank Churners 35.56 14.07 19.26 0.21] 43.43 0.00 25.75 0.21
Red Wine Quality 33.14 11.47 17.39 0.46 62.51 18.18 43.62 0.72
Random Target |Mushroom Edibility 12.61 3.92 6.23 0.26) 43.05 0.00 25.18 0.59
Bank Churners 18.81 12.40 14.06 0.18] 41.66 0.00 25.60 0.64]
Red Wine Quality 40.87 14.31 20.71 0.39) 91.87 24.12 61.61 0.87|
Random Walk Mushroom Edibility 488.50 21.42 92.01 6.35 38.87 2.15 25.87 0.63
Bank Churners 30.34 8.10 15.94 0.28| 99.43 0.00 62.83 0.47|

models is as follows.

The theorems proved in Section 4 imply that the capability of the directed walk on a given
direction depends on the existence of a border in the direction from the randomly selected
starting test case. If a border point is found, it only differs from the starting test case in one
feature. This is a limitation of the capability of the strategy. This is the case for testing the
mushroom edibility, where it is rare that changing just one feature of a mushroom variety will
change its edibility; usually at least two features must change.

It was also observed that the random target strategy has zero capability when used for
testing the NB and NB2 models of mushroom edibility, as does all three strategies when testing
the SVM and SVM2 models of bank churners. The reason for the poor performances is as
follows.

The random target strategy discovers a border point when the two starting points are in
different classes. If a subdomain is small, the probability of selecting a point inside it is cor-
respondingly small. In the extreme case, when all test cases are in the same class, no border
will be discovered. The NB and NB2 models of mushroom edibility classify all mushrooms in
the training dataset as poisonous. Similarly, the SVM and SVM2 models of bank churners clas-
sify all credit card customers to be non-churners so no Pareto front can be discovered by any
strategy.

It is worth noting that the NB and NB2 models have the worst accuracy among all models
of mushroom edibility, and SVM/SVM2 models are the worst on accuracy among the models of
bank churners. They are underfit models, which means they are insufficient for classifying the
input data space. Therefore, exploratory testing cannot detect the borders between subdomains.

On average, the random walk strategy achieved the best performance on capability. It can
discover a border point even if all start points are in the same class; it is only required that a
border exists within walking distance from the starting point. Moreover, the Pareto front found
may be different from the starting point on many features. Although its cost is not the lowest
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of the three, it balances capability and cost best of the three.
« Length of Execution Time.

The real cost of the testing strategies in terms of the lengths of execution time required to
generate a Pareto front for a classifier depends on the speed of the computer system, the time
needed to invoke the classifier to classify an input data, and the number of walks to be executed.
The measure of test cost in terms of the number of invocations of the classifier under test per
pair of points in the Pareto front gives an abstract metric, which is independent of these factors
while the real cost can be calculated with these factors as parameters by using equation (26). To
give an indication to the scale of real cost, we have run each strategy 10 times for each classifier,
and each time we have executed 1000 walks and recorded the clock times spent and the sizes
of Pareto fronts generated. The testing tool Morphy was run on a Windows PC with Intel Xeon
x64 CPU E3-1230V5 3.40GHz and 32 GB memory.

Table 5 below shows the average numbers of Pareto front pairs generated per second for
various coded classifiers used in the controlled experiments. From these data, the average real
cost of generating Pareto fronts of a certain size, such as 1000 pairs of points, can be easily
calculated by the formula T'ime = L where P is the size of Pareto front, RC is the data of real

RC*
cost given in Table 5, i.e. the average number of Pareto front pairs per second.

Table 5: Average Number of Pairs Generated Per Second for Coded Classifiers

Classifier Directed Walk | Random Target | Random Walk | Average
Box 1 645.93 3059.24 1919.92 1875.03
Box 2 2734.57 3532.37 2954.01 3073.65
Circle 1 1084.63 3730.02 2281.91 2365.52
Circle 2 2956.22 3591.11 2909.88 3152.40
Line 1 2421.86 3709.12 2749.14 2960.04
Line 2 2434.26 3610.46 2985.71 3010.14
Sin 1 2133.10 3733.23 2880.03 2915.45
Sin 2 2500.64 3653.87 3090.02 3081.51
Triangle 1 601.53 3104.84 1853.88 1853.42
Triangle 2 2773.01 3697.53 2932.50 3134.35
Average 2028.57 3542.18 2655.70 2742.15

The data shows that, for coded classifiers, on average, generating a Pareto front consisting of
1000 pairs of points only took less than 0.4 seconds. The worst case, for directed walk strategy,
for the same size of Pareto front was 1.66 seconds and the best case, for random target strategy,
took 0.27 seconds.

Table 6 shows the results of testing those real ML models used in our case studies. It gives
the average number of pairs generated per second for various types of ML models using dif-
ferent exploratory strategies in the same experimental setup, where DW, RT and RW stand for
Directed Walk, Random Target and Random Walk strategies, respectively.

The data shows that it took less than 10 seconds to generate Pareto fronts of 1000 pairs. In
the worst case, which is when testing the Stack model of Mushroom Edibility using the directed
walk strategy, it took an average of 117.11 second (less than 2 minutes) in 10 executions of the
test strategies to generate 1000 pairs. The best case is when testing the Logistic Regression
model LR of Bank Churners using the random walk strategy. This took less than 2 seconds to
generate the same number of pairs.

There are two machine learning models in our case study that do not have any border be-
tween classes as our exploratory testing discovered. They are the nave Bayes model NB of
mushroom edibility and the Support Vector Machine model SVM of bank churners prediction.
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Table 6: Average Number of Pairs Generated Per Second for Real ML Models

ML Red Wine Quality Mushroom Edibility Bank Churners

Model DW RT RW DW RT RW DW RT RW | Average
DT 84.46 266.68 203.21 131.52 329.42 176.43 278.04 188.77 327.33 220.65
HV 21.68 32.13 28.62 22.56 119.62 23.43 33.68 35.09 47.05 40.43
KNN 30.16 21.95 37.70 36.73 140.34 9.23 19.68 47.57 39.35 42.52
LR 272.68 260.63 202.64 135.44 307.29 121.53 276.27 204.84 526.73 256.45
NB 146.81 156.79 148.69 -- -- -- 166.61 231.19 113.20 160.55
Stack 9.03 13.21 10.86 8.54 46.29 8.76 10.66 13.83 14.53 15.08
NY 8.62 20.31 14.39 11.52 63.03 12.09 17.87 18.92 22.13 20.99
SVM 37.02 68.94 52.74 120.37 306.60 61.98 107.94 - - - - - -
Avg 76.31 105.08 87.36 66.67 187.51 59.06 114.69 105.74 155.76 105.70

Table 7 shows the average lengths of time that the strategies completed the search for borders
by taking 1000 walks to test these two models. In the worst case, it took less than 2 minutes,
while in most cases it took between a fraction of a second and a few seconds.

Table 7: Lengths of Time (Second) to Complete Search when No Border in the Classifier

ML Model Directed Walk | Random Target | Random Walk
NB-Mushroom 14.83 0.25 2.87
SVM-Bank 102.47 0.69 7.51

In general, the time taken to execute a test strategy heavily depends on how fast the classi-
fier under test is for classifying an input data. Our experiment data presented in the previous
sections shows that the time to execute the strategies increases linearly with the number of
walks and with the number of pairs of border points generated. Therefore, the experiment data
with real machine learning models indicate that to generate a Pareto front containing 1000s of
pairs, on average we only need 10s of seconds. It is highly efficient for practical uses of the
strategies.

« Validity of the Conclusions.

The case studies have been conducted on datasets selected at random from a large library
with each dataset representing a different type of classifier system. It is possible that the datasets
chosen had special properties that had an impact of the results but this threat to validity can be
eliminated by repeating the case studies on other datasets.

The case studies used a wide range of models of different types and of different quality
(e.g. of different accuracy). They were constructed by using Python code selected from the
Kaggle website at random. The distribution of the quality among these models may be not
representative of the models in a real production environment. Thus, the statistics may be
biased. However, due to the lack of data on the distributions of model quality, we are unable to
eliminate such a potential bias. The way to improve this aspect is to use the test strategy in a
real production environment.

The test systems were implemented by the authors according to the formal definitions given
in Section 3. They were debugged and tested on a large number of test cases. A threat to the
validity of the case study is the existence of bugs in the test system, which may have impact
on the correctness of the data. The source code of the test systems is written in Java and freely
available from GitHub for inspection. We are reasonably confident that the test system has no
serious bugs.

The process of the case studies is highly automated by executing test scripts written in
Morphy’s test scripting language. Manual operational errors in the conduct of the case studies
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can be eliminated to the highest extent. However, there may be bugs in the test script and in the
Morphy testing tool. Such bugs form a threat to the validity of the conclusions drawn from the
data. We believe that this threat should have a minimal impact, however, as the Morphy tool
and test scripts have been tested, too. Morphy is available for download and use for free. The
test scripts are also available on GitHub for download and inspection. The whole case study
can be repeated easily.

Finally, the observations made in the case studies and the conclusions drawn from the data
are consistent with the observations made in the controlled experiments and what the for-
mally proved theorems imply from the formal definitions and the algorithms. Therefore, we
can confidently conclude that the conclusions drawn from the cases studies are valid and can
be generalised to other machine learning models built via supervised training on datasets.

6. Related Work

The most closely related work is exploratory testing (ET). We will review the current state of
research on this field, and summarise our contributions to it. We will also discuss the similarities
and differences between our work and adaptive random testing (ART), fuzz and data mutation
testing, metamorphic testing (MT), and search-based testing (SBT). Finally, since the work of
this paper is partially inspired by the traditional testing method of domain testing, we will also
briefly discuss the applicability of that method to machine learning models.

6.1. Exploratory Testing

ET has been widely applied to many types of software systems, but most successfully to GUI-
based systems; see, for example, (Whittaker, 2009). Pfahl et al. (2014) reported an online survey
of Estonian and Finnish software developers and testers on their uses of exploratory testing in
practice, revealing that a majority used it intensively for usability-critical, performance-critical,
security-critical and safety-critical software. However, as far as we know, there is no report on
the systematic application of ET for testing Al applications.

Research on ET exists that evaluates its fault detection effectiveness and efficiency, including
reports on its effectiveness in practice. Itkonen et al. (2005; 2007; 2014) were amongst the first.
They used students as subjects to compare ET with traditional software testing techniques that
based on pre-designed test cases (TCT). Through replicated experiments, they found that ET
had the same effectiveness in fault detection but greater time-efficiency because less design
effort was needed. Moreover, TCT produces more false-positive defect reports than ET.

Afzal et al. (2014) conducted a controlled experiment with 24 practitioners and 46 students
who performed manual functional testing to compare the effectiveness of exploratory testing
against traditional test techniques. Unlike Iktonen et al., they reported that ET found signifi-
cantly more defects, including those at varying levels of difficulty, type and severity. Also unlike
Iktonen et al., they did not report that ET reduced the number of false-positive defect reports.

However, both of these experiments were conducted on traditional software and since Al
applications have different failure modes and faults, it is unclear whether ET is effective and
efficient for machine learning applications.

Since ET is used as a manual testing method, research on it has mostly focused on the hu-
man factors that alter effectiveness and efficiency. An industrial case study by Gebizli and Sozer
(2017) with 19 practitioners of different educational backgrounds and experience levels show
that both factors affects efficiency but only experience affects the number of critical failures de-
tected. Micallef et al. (2016) found that trained testers employed different types of exploratory
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strategies than untrained testers. The trained testers were more effective at finding input vali-
dation errors, while untrained testers tended to uncover mostly content bugs. The two groups
were however equally effective at detecting logical bugs or functional UI bugs.

Shoaib et al. (2009) found that people with extrovert personalities are more likely to be good
exploratory testers. Itkonen et al. (2013) found that exploratory testers applied their knowl-
edge for test design and failure recognition differently. Martensson et al. (2021), after inter-
viewing testers in six companies, identified nine key factors that determine the effectiveness of
exploratory testing in an organisation and proposed a simple model for improving it.

On the automation of ET, Eidenbenz et al. (2016) employed artificial intelligence techniques
to predict test cases that are likely to cause failure in testing an industry control software.
Makondo et al. (2016) used neural networks to train test oracles to help the analysis of test
results. Research has also been reported on the development of test environments to support
exploratory testing. For example, ARME enables the automatic refinement of system models
based on recorded testing activities of test engineers (Gebizli and Sozer, 2016). Tapir supports
team collaboration in exploratory testing and reconstruction of system models (Bures et al.,
2018). However, as far as we know, there is no work in the literature that automates exploratory
strategies as we have done, even though many exploratory strategies have been documented
in the literature such as those by Whittaker (2009) and Hendrickson (2013).

Our main contributions to exploratory testing are to apply it to machine learning applica-
tions and to automate it. By identifying the discovery of boundary values as a specific goal of
testing, we demonstrated how the elements of ET can be formalised and implemented in the
datamorphic testing framework to achieve test automation. Our approach can be summarised
as follows.

Firstly, test design is formalised and implemented by a set of datamorphisms. Together
with a test executor test morphism, these datamorphisms form a test system for exploratory
testing. We introduced the notion of complete exploratory test systems, developed a systematic
way to construct exploratory test systems for feature-based classifiers, and proved that such
exploratory test systems are complete so that they ensure the whole data space of the model
can be explored.

Secondly, steering strategies are formalised and implemented as algorithms that invoke the
datamorphisms and the test executor. We then formally proved that the strategies are correct;
that is, they always terminate and produce Pareto fronts that represent the borders between
classes. In other words, these strategies always achieve the goal of ET: to discover the borders
between classes defined by the machine learning model under test.

Finally, the strategies have been implemented in the automated datamorphic testing tool
Morphy (Zhu et al., 2020, 2019a). We have also conducted empirical evaluations of the strate-
gies to determine their capability and cost through controlled experiments and case studies.
The results demonstrated that the approach can discover the borders between classes in a cost
efficient way. The data also provide insight into the factors that affect capability and cost for
each test strategy. This can be used to select appropriate parameters for appropriate strategies
for each classification application.

6.2. Random and Adaptive Random Testing

Generally speaking, random testing (RT) is a software testing method that selects or gen-
erates test cases through random sampling over the input domain or a profile of the software
under test (SUT) according to a given probability distribution (Hamlet, 2002). As discussed
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in (Zhu et al., 1997), RT techniques can be classified into two types: representative and non-
representative.

The representative type uses the probabilistic distribution on the input domain as the input
distribution for the SUT. One approach is to sample at random the operation profile of the
software under test (Myers et al., 2011). Another approach is to develop a Markov model of
the human computer interaction process and use it to generate random test cases (Whittaker
and Thomason, 1994). Although representative RT works well for fault detection in simulation-
based experiments (Duran and Ntafos, 1984; Hamlet and Taylor, 1990; Tsoukalas et al., 1993;
Ntafos, 1998), its most compelling advantage is that test results naturally lead to an estimate of
software reliability. However, such random testing requires a much larger number of test cases
to achieve the same level of fault detection ability in comparison to test methods where the test
cases are purposely designed.

In contrast, the non-representative type of RT uses a distribution unconnected to the op-
eration of the software. The major subtype of ART methods, for example, spread test cases
evenly over the entire input space (Chen et al., 2001b, 2004b, 2007, 2010) and experiments
show that they improve both fault detection ability (Chen and Kuo, 2007) and reliability (Liu
and Zhu, 2008). Even spread over the input space can be achieved by manipulating randomly
generated test cases. Many such manipulation algorithms (called “strategies” in the literature)
have been developed and evaluated, including mirror (Chen et al., 2004a), balance (Chen et al.,
2006), distance (Huang et al., 2020), filter (Chan et al., 2005), lattice (Mayer, 2005), partition
(Mao et al., 2020), etc. In a recent comprehensive survey of ART, Huang et al. (2019) classified
these techniques into Select-Test-From-Candidates Strategies, Partitioning- Based Strategies,
Test-Profile-Based Strategies, Quasi-Random Strategies, and their combinations (called Hybrid-
Based Strategies). Even spread can also be achieved with evolutionary computing algorithms,
as discussed later in the subsection on search-based testing.

A common feature of these ART algorithms for test case generation is that the new test
cases are generated or selected based on the positions of existing test cases in the input space.
This is similar to the so-called steering feature of exploratory testing. However, none of them
uses the information revealed in test executions. In fact, the generation and/or selection of
new test cases in ART strategies do not require the execution of the software under test at all.
Of course, the most fundamental difference between ART and ET is that ART does not aim to
discover the system’s behaviour although evenly spreading the test cases may help indirectly.
Another difference is in test design, which is the selection of a probability distribution on the
input domain for ART and a decision on how to change the test cases for ET.

6.3. Fuzz and Data Mutation Testing

Datamorphic testing evolves from data mutation testing (DMT) (Shan and Zhu, 2009) and
its integration with metamorphic testing (Zhu, 2015). Data mutation testing was proposed by
Shan and Zhu (2006) to generate realistic test cases that are structurally complex, such as those
for software modelling tools. The basic idea is to develop a set of operators that transform
existing test cases (called seed test cases) to new test cases (called mutant test cases). These op-
erators were originally called data mutation operators, but were renamed as datamorphisms in
(Zhu et al., 2019b). Shan and Zhu (2009) also proposed that data mutation operators (i.e. data-
morphisms) can indicate the correctness of the program on mutant test cases. Metamorphic
relations associated with data mutation operators were formally defined in (Zhu, 2015) as mu-
tational metamorphic relations, and called metamorphisms in datamorphic testing (Zhu et al.,
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2019b). The uses of seed makers, datamorphisms and metamorphisms in one general purpose
testing tool to achieve test automation was first reported in (Zhu, 2015).

Data mutation testing has similarity to fuzz testing; see, for example, (Sutton et al., 2007).
However, mutation testing emphasises an engineering process of developing data mutation op-
erators that can be used to generate meaningful and realistic test cases for the software under
test, while fuzz testing randomly makes a change without first determining whether the mu-
tants are meaningful and realistic or not. A datamorphic test system can include either random
or purposeful datamorphisms or even a combination of both. Most importantly, datamorphic
testing recognises other types of test morphisms and uses them to achieve test automation at a
high level of strategy and test process (Zhu et al., 2019b, 2020).

6.4. Metamorphic Testing

Metamorphic testing was proposed by Chen et al. (1998b) to use metamorphic relations to
check test results and to generate test cases. A metamorphic relation is a relation on inputs
and outputs of multiple test cases. Theoretically speaking, metamorphic relations are axioms
about the software under test presented in a special form as axioms that contain multiple test
cases. Such axioms can be specified in algebraic specification languages. For example, a meta-
morphic relation Vx, y.(x+y = y+ x) on integer values of x and y can be written in all algebraic
specification languages such as SOFIA (Liu et al., 2014).

Algebraic specifications have been used for test automation since the early 1980s. They
have been developed for testing procedural programs (Gonnon et al., 1981; Bernot et al., 1991),
object oriented programs (Doong and Frankl, 1994; Hughes and Stotts, 1996; Chen et al., 2001a,
1998a), component-based systems (Kong et al., 2007; Yu et al., 2008), and more recently for
service-oriented systems (Liu et al., 2016). The research on metamorphic testing demonstrated
that such axioms can be useful for testing software even if they do not form a complete set of
axioms, though the latter are often required by test tools that automate software testing from
algebraic specifications (Chen et al., 2001a, 1998a).

The main difficulty of applying metamorphic testing is to define the metamorphic relations
for the software under test. This is because metamorphic relations are in fact definitions of the
semantics of the application. Zhu (2015) proposed a feasible engineering solution via the in-
tegration of data mutation testing with metamorphic testing through mutational metamorphic
relations (i.e. metamorphisms). This approach is further developed into datamorphic testing
(Zhu et al., 2018, 2019a). The test automation environment Morphy shows that the approach
can be efficiently implemented and applied. However, datamorphic testing is more general than
metamorphic testing. It may contain test morphisms other than metamorphisms. It can also
be applied without metamorphic relations as demonstrated by the case study reported in (Zhu
et al,, 2020) and the exploratory strategies studied in this paper, while metamorphic relations is
essential for metamorphic testing (Chen et al., 2018).

Research on testing Al applications has been active in recent years (Bai et al., 2018; Gotlieb
et al., 2019; Roper and Zhou, 2020). Metamorphic testing is one of the most popular approaches
to testing machine learning applications. The testing of driverless vehicles is one interest ap-
plication; see for example, (Tian et al., 2018; Zhou and Sun, 2019). These works demonstrate
that synthetic test cases can find many erroneous behaviors under different realistic driving
conditions, many of which led to potentially fatal crashes in three top performing DNNs in the
Udacity self-driving car challenge. Most existing testing techniques for DNN-driven vehicles
are heavily dependent on the manual collection of test data under different driving conditions.
This is prohibitively expensive as the number of test conditions is huge. The works by Tian
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et al. (2018) and Zhou and Sun (2019) also show that the metamorphic approach can be cost
efficient.

Metamorphic testing has also been applied to testing clustering and classification algo-
rithms. Xie et al. (2011) developed a set of metamorphic relations as test oracles for testing
such machine learning alrotihms. Yang et al. (2019) reported a case study on the use of meta-
morphic relations to test a clustering function generated by the data mining tool Weka.

It is interesting to observe that datamorphisms are actually used in these cases. For exam-
ple, DeepTest automatically generates test cases that leverage real-world changes in driving
conditions like rain, fog, lighting conditions, etc. via image transformations (Tian et al., 2018).
Metamorphic relations are defined based on such image transformations and used to detect
erroneous behaviours. Zhu et al. (2019b) reported a case study on the testing of four real in-
dustry applications of face recognition. They used feature-editing operators like changing the
subject’s age, gender, skin tone, make-up etc., to generate synthetic test cases from existing pic-
tures. In Xie et al. (2011) and Yang et al. (2019)’s work, manipulations of datasets were used to
test clustering and classification algorithms. The transformations of images and manipulation
of datasets are actually datamorphisms.

In general, metamorphic testing differs from the work of this paper because it belongs to
confirmatory testing, i.e. it checks that the metamorphic relations are satisfied, rather than
discover the behaviour of the software under test. New test cases are usually generated based
on existing test cases, where the new test cases are called follow-up test cases in the literature.
Thus, metamorphic testing replicates the feature of steering in the exploratory testing process.
When metamorphic testing is combined with data mutation testing as in the examples discussed
above, test designs can be represented in the form of datamorphisms.

6.5. Search-Based Testing

Search-based testing regards testing as an optimization problem (Harman et al., 2012; Dave
and Agrawal, 2015) to maximize the test effectiveness or test coverage by searching on the space
of test cases. Search-based testing techniques can also be applied to ART by considering even
spread test cases as the goal of optimisation.

Genetic algorithms, and other algorithms within evolutionary computing, are often em-
ployed to realize such optimizations. In the evolution process, new test cases are generated
from existing ones in the population through mutation, crossover and randomisation operators
to improve the fitness of the population. Therefore, genetic algorithms provide a steer, just as
exploratory test algorithms do. Test design in ET can be represented in the form of the muta-
tion and crossover operators of evolutionary computing, but this fact is rarely studied and used
explicitly. Depending on what the fitness metrics encode, a new test case may be executed if it
requires information about the program’s behaviour. Therefore, search based testing has most
of the essential features of ET, but the key difference is in their goals: search-base testing aims
to optimise, while ET aims to discover.

6.6. Domain Testing

The work reported in this paper is inspired by the domain testing method, in which the
input space of the software under test is decomposed into a number of sub-domains according
to either the specification or the program code of the software under test. Test cases are then
selected on or near to the borders between sub-domains. Domain errors are very common pro-
gramming errors; for example, sub-domains could be missing and/or the boundaries between
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sub-domains could be incorrectly implemented. The method of domain testing aims to detect
such errors.

Research into and practical uses of domain testing can be traced backed to the late 1970s
and early 1980s. For example, White and Cohen (1980) studied how programming errors are
related to domain modifications and proposed a strategy to select N test cases on the borders
and 1 test case near to the borders of the subdomains in order to detect boundary parallel shift
errors for linear borders, where N is the dimension of the input space. Similarly, Clarke et al.
(1982) proposed a strategy to select N test cases on the border and N test cases nearby. They
proved this strategy is capable of detecting both a parallel shift and a rotation of the linear
boundary. Afifi et al. (1992) proposed a strategy that selects N + 2 test cases on and nearby
to each border of a subdomain. By applying Zeil’s theory of perturbation testing (Zeil, 1983,
1989), they proved that the strategy is capable of detecting linear errors of boundaries defined
by non-linear functions (Zeil et al.,, 1992), where linear errors are linear transformations of the
boundary function. A survey of the research on domain testing in the 1980s and 1990s can be
found in (Zhu et al., 1997). Since then little progress has been reported in the literature.

Domain testing is a typical traditional scripted and confirmatory testing method that derives
a complete test set before testing is actually executed and the test results are compared with
predetermined expected outputs. There is no immediate execution of test cases after generation,
no steering of the testing using the output of previous tests, and the design of test cases is not
focused on the variations in the behaviour space. The purpose of domain testing is to confirm
that the borders between sub-domains are correctly drawn.

The research on domain testing demonstrated that programming errors often manifest them-
selves as changes in the boundaries between sub-domains. Test cases on or near those borders
are effective at detecting these errors. Errors in a machine learning model must also occur
around the borders between sub-domains. It is very useful to know where borders are actu-
ally drawn between sub-domains defined by the model. However, the existing domain testing
techniques cannot easily be applied to classifiers built from machine learning techniques, be-
cause both the expected border as specified and the implemented border as coded are usually
not available. Moreover, the domain errors of a machine learning model could be much more
complicated than traditional programming errors. Figure 19 visualises the Pareto fronts of the
original coded classifier Box 2 and various machine learning models built from a dataset ob-
tained by a random sampling of Box 2 on 5000 points. It shows that the boundary errors of
these machine learning models are highly complicated and significantly different from the cod-
ing errors assumed in the research on domain testing.

6.7. Summary of The Comparison

To summarise the differences between the proposed approach and the related testing meth-
ods discussed above, we contrast these methods on the four essential elements of ET; see Table
8.

7. Conclusion and Future Work

The Pareto fronts generated by the algorithms studied in this paper contain a huge amount
of information about behaviour of the ML models and we are exploring their potential benefits.
First, the Pareto front brings a number of possible new ways to analyse and improve ML models.
We are currently working on how to use Pareto fronts in the measurement and comparison of
ML model’s performance.
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Figure 19: Subdomain Boundaries of Various Machine Learning Models of Box 2
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Table 8: Comparison of Related Testing Methods

Test Method ‘ Test Design ‘ Execution ‘ Learning ‘ Steering ‘
Proposed Method (ET) v v v v
Fuzz Testing X 4 X X
Data Mutation Testing v v X X
Adaptive Random Test X X X 4
Metamorphic Testing X 4 X 4
Search-Based Testing X X/ X v
Domain Testing X X X X

Another possible benefit is in explaining and/or interpreting the output of a ML model,
which has been an active research topic recently; see, for example, (Linardatos and Kotsiantis,
2021; Molnar, 2021). Given a Pareto front that represents the borders between classes, a model’s
classification of a data point could be explained and interpreted, for example, by contrasting it
against the nearest points on the surrounding borders and the distance of the point to these
boundary points.

The test cases contained in a Pareto front seem also useful to improve model’s performance.
For example, when the training data is imbalanced, those Pareto front points in minority classes
could be used as additional synthetic training data similar to the SMOTE technique (Fernandez
et al., 2018).

How to present the information contained in Pareto fronts is another interesting topic for
future research. For example, the visualisation of Pareto fronts of various ML models in Figure
19 provides a clear view of their behaviours. An interesting research question for future work is
how to visualise models on higher dimensional data spaces. There are a few existing techniques
to visualise higher dimension spaces, such as contour charts for visualising 3D models on a 2D
space. The effectiveness of such techniques needs to be tested with empirical studies.

There are also many possible variations of the strategies proposed and studied in this paper.
In particular, the strategy’s algorithms do not need a measurement of the distance between
two test cases. However, a distance measurement can be used to decide when to terminate the
refinement loop, thereby improving the effectiveness. We are conducting further research on
strategies that improve both cost and capability.

This paper focused on multi-class feature-based classifiers whose data spaces are symbolic
or numerical values of features and each instance of data is assigned with a single label. A
valuable topic for further study is to extend the approach to classifiers on other types of data
spaces, such as time series, images, audio and video data, and natural language texts, etc.

Moreover, a machine learning classifier can be:

« single labelled, where one label is assigned to each instance in the data space, thus the
classes are non-overlapping sub-domains;

« multi-labelled, where multiple labels can be assigned to an instance, thus, an data point
may belong to multiple classes and the sub-domains may overlap with each other; and

« hierarchical, where labels are organised in a hierarchical structure thus the sub-domain
of a class can be divided into a number of subclasses, etc.
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In this paper, we have focused on single labelled classifiers. It will be interesting to investi-
gate how to extend the theory and their algorithms to multi-labelled and hierarchical classifiers.

More generally, classifiers are classification models that map from a data space to a set of
categorical labels, while predictors are models of functions of continuous or ordered numerical
values. Such predictors are often constructed through regression analysis and used for numeric
predictions (Aggarwal, 2015). It will also be interesting to adapt the approach studied in this
paper to predictors.
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Appendix A. Data of The Controlled Experiments

Table 9 shows the summary data from controlled experiments with the directed walk strat-
egy. For a particular number of test cases, indicated by column #Seeds, generated at random
from the uniform distribution, we walk 20 steps in one direction using the upward datamor-
phism. The columns Avg #Runs and Avg #Mutants give the average number of test executions
of the subject program under test and the average number of mutant test cases generated ie the
number of test cases on the border of the clusters.

Table 9: Experiments Data of The Directed Walk Strategy

. #Seeds Avg Avg Avg Avg . #Seeds Avg Avg Avg Avg
Subject (=#Walks) | #Runs | #Mutants | Cost Capab Subject (=#Walks) #Runs | #Mutants | Cost | Capab
Box 1 200 728.70 55.60 13.11 13.90 Box2 200 2240.50 206.60| 10.84 51.65
400 1133.80 93.60 12.11 11.70 400 4203.60 400.80( 10.49 50.10
600 1755.20 155.60 11.28 12.97 600 6355.00 615.60| 10.32 51.30
800 2083.90 188.40 11.06 11.78 800 8145.90 794.60| 10.25 49.66
1000 2790.00 259.00 10.77 12.95 1000 10146.00 994.60| 10.20 49.73
1200 3518.00 331.80 10.60 13.83 1200 12370.00 1217.00( 10.16 50.71
Circle 1 200 1037.10 86.40 12.00 21.60| Circle 2 200 2090.80 191.80| 10.90 47.95
400 1724.30 152.80 11.28 19.10 400 3903.00 370.60| 10.53 46.33
600| 2675.50 247.60 10.81 20.63 600 5891.50 569.20| 10.35 47.43
800| 3444.00 324.40 10.62 20.28 800 7843.90 764.40| 10.26 47.78
1000| 4436.00 423.60 10.47 21.18 1000 9748.00 954.80| 10.21 47.74
1200 5292.00 509.20 10.39 21.22 1200 11412.00 1121.20( 10.18 46.72
Line 1 200 2088.10 191.60 10.90 47.90 Line 2 200 2506.50 233.60| 10.73 58.40
400 4114.10 391.80 10.50 48.98 400 4876.10 468.00( 10.42 58.50
600| 6235.70 603.60 10.33 50.30 600 7039.80 684.00| 10.29 57.00
800| 8044.00 784.40 10.25 49.03 800 9321.90 912.20| 10.22 57.01
1000| 10182.00 998.20 10.20 49.91 1000 12056.00 1185.60| 10.17 59.28
1200| 11904.00 1170.40 10.17 48.77 1200 14116.00 1391.60| 10.14 57.98
Sin1 200| 2189.90 201.80 10.85 50.45 Sin2 200 2651.30 248.00| 10.69 62.00
400| 4129.10 393.20 10.50 49.15 400 5197.80 500.20| 10.39 62.53
600| 6243.50 604.40 10.33 50.37 600 7727.60 752.80| 10.27 62.73
800 8394.00 819.40 10.24 51.21 800| 10172.00 997.20| 10.20 62.33
1000 10186.00 998.60 10.20 49.93 1000 12596.00 1239.60| 10.16 61.98
1200| 12076.00 1187.60 10.17 49.48 1200 15192.00 1499.20| 10.13 62.47
Triangle 1 200 522.70 34.80 15.02 8.70| Triangle 2 200 2016.30 184.40| 10.93 46.10
400 830.20 63.40 13.09 7.93 400 4147.10 395.00| 10.50 49.38
600 971.40 77.20 12.58 6.43 600 5783.60 558.40| 10.36 46.53
800 1403.80 120.40 11.66 7.53 800 7573.80 737.40| 10.27 46.09
1000 1835.90 163.60 11.22 8.18 1000 9791.90 959.20| 10.21 47.96
1200 1872.00 167.20 11.20 6.97 1200( 11170.00 1097.00( 10.18 45.71

Table 10 gives the results of the first experiment with the random walk strategy in which
the set of test cases is fixed but the number of walks varies. It shows the average number of
test executions and the average number of mutant test cases for each number of random walks
for each subject.

In the second set of experiments on random walk strategy, the number of walks (800) was
fixed, but the number of seed test cases varies. Table 11 shows the results of experiments.

The random target strategy only has one parameter: the number of pairs of test cases se-
lected at random. The experiments are conducted with this parameter ranging from 200 to 1200
and the results are given in Table 12.
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Table 10: Experiments Data of The Random Walk Strategy with Variable Number of Walks

. Avg Avg Avg Avg . Avg Avg Avg

Subject | #Walks #Runs #Mutants Cost Capab Subject | #Walks |Avg #Runs #Mutants Cost Capab
Box 1 200| 4419.80 85.20 51.88 21.30 Box2 200 4779.80 205.80 23.23 51.45
400| 8715.10 163.40 53.34 20.43 400 9555.90 420.40 22.73 52.55
600| 13005.40 241.00 53.96 20.08 600| 14253.20 627.40 22.72 52.28
800| 17324.10 335.60 51.62 20.98 800| 18909.20 821.00 23.03 51.31
1000| 21630.60 412.40 52.45 20.62 1000| 23532.20 1025.40 22.95 51.27
1200| 25898.20 502.60 51.53 20.94 1200| 28349.80 1268.60 22.35 52.86
Circle 1 200| 4505.20 111.20 40.51 27.80|| Circle 2 200 4736.00 182.60 25.94 45.65
400| 8876.90 208.40 42.60 26.05 400 9426.30 369.00 25.55 46.13
600| 13220.60 296.20 44.63 24.68 600( 14032.70 564.20 24.87 47.02
800| 17671.30 424.60 41.62 26.54 800| 18629.00 707.20 26.34 44.20
1000( 22102.10 536.80| 41.17 26.84 1000| 23347.70 916.20 25.48 45.81
1200| 26222.90 582.80 44.99 24.28 1200| 28144.80 1133.60 24.83 47.23
Line 1 200| 4704.80 154.40 30.47 38.60|| Line 2 200 4707.00 199.00 23.65 49.75
400| 9339.30 316.00 29.55 39.50 400 9345.20 379.80 24.61 47.48
600| 13920.60 477.60 29.15 39.80 600( 13957.00 573.60 24.33 47.80
800 18579.60 652.60 28.47 40.79 800| 18573.70 775.80 23.94 48.49
1000| 23236.30 822.20 28.26 41.11 1000| 23094.10 968.20 23.85 48.41
1200| 27768.40 983.80 28.23 40.99 1200| 27627.40 1186.60 23.28 49.44
Sin1 200| 4769.40 230.40( 20.70 57.60)| Sin2 200| 4789.00 179.80 26.64 44.95
400| 9549.30 462.00 20.67 57.75 400 9502.60 364.20 26.09 45.53
600| 14194.70 677.60 20.95 56.47 600| 14241.70 565.40 25.19 47.12
800| 18832.20 907.40 20.75 56.71 800| 18921.50 735.20 25.74 45.95
1000| 23447.60 1149.80 20.39 57.49 1000| 23533.00 887.00 26.53 44.35
1200| 28121.00 1376.00 20.44 57.33 1200| 28164.10 1084.40 25.97 45.18
Triangle 1 200| 4327.70 59.60 72.61 14.90(Triangle 2 200 4731.70 184.60 25.63 46.15
400| 8583.20 121.40 70.70 15.18; 400 9410.30 393.00 23.94 49.13
600( 12854.30 198.40| 64.79 16.53 600| 14102.90 596.20 23.65 49.68
800| 17058.30 270.20 63.13 16.89 800| 18807.20 801.60 23.46 50.10
1000| 21300.00 326.20 65.30 16.31] 1000| 23516.30 1003.20 23.44 50.16
1200| 25542.30 398.00 64.18 16.58, 1200| 28076.90 1182.40 23.75 49.27

Table 11: Experiments Data of The Random Walk Strategy with Variable Number of Test Cases
. Avg Avg Avg Avg . Avg Avg Avg

Subject | #Seeds #Runs #Mutants Cost Capab Subject | #Seeds |Avg #Runs #Mutants Cost Capab
Box 1 200[ 17288.70 308.20] 56.10 19.26] Box2 200| 18909.90 836.40] 22.61 52.28
400 17455.60 314.40 55.52 19.65 400| 18967.60 821.80 23.08 51.36
600| 17506.50 315.40 55.51 19.71 600| 19160.30 839.60 22.82 52.48
800 17577.30 320.00 54.93 20.00 800| 19271.50 843.60 22.84 52.73
1000| 17627.10 317.60 55.50 19.85 1000| 19278.20 822.00 23.45 51.38
1200| 17615.10 322.00 54.71 20.13 1200| 19300.00 835.80 23.09 52.24
Circle 1 200| 17547.80 387.80 45.25 24.24( Circle 2 200| 18717.10 715.60 26.16 44.73
400 17752.10 408.40 43.47 25.53 400| 18847.30 724.40 26.02 45.28
600| 17885.30 410.00 43.62 25.63 600| 19009.20 759.20 25.04 47.45
800 17897.00 405.20 44.17 25.33 800| 19052.80 745.60 25.55 46.60
1000| 17920.70 400.60 44.73 25.04 1000| 19055.10 724.80 26.29 45.30
1200| 18080.30 433.20 41.74 27.08 1200| 19064.20 720.60 26.46 45.04
Line 1 200| 18616.60 658.20 28.28 41.14| Line 2 200| 18540.40 770.80 24.05 48.18
400( 18716.70 631.20 29.65 39.45 400| 18627.50 764.60 24.36 47.79
600| 18792.20 639.40 29.39 39.96 600| 18755.40 760.80 24.65 47.55
800( 18809.10 649.20 28.97 40.58 800| 18883.50 785.60 24.04 49.10
1000| 18913.80 643.00 29.41 40.19| 1000| 18751.30 748.60 25.05 46.79
1200| 18919.60 638.20 29.65 39.89 1200| 18871.00 778.80 24.23 48.68
Sinl 200| 18818.60 905.20 20.79 56.58 Sin2 200| 18877.20 717.00 26.33 44.81
400 18988.60 905.20 20.98 56.58 400| 18918.20 717.40 26.37 44.84
600| 19083.90 910.40 20.96 56.90 600| 19116.30 745.20 25.65 46.58
800 19153.70 913.40 20.97 57.09 800| 19125.00 716.80 26.68 44.80
1000| 19136.10 905.60 21.13 56.60 1000| 19219.70 715.80 26.85 44.74
1200| 19249.70 912.40 21.10 57.03 1200| 19181.60 713.40 26.89 44.59
Triangle 1 200| 17038.10 243.40 70.00 58.72|[Triangle 2 200| 18844.10 798.20 23.61 49.89
400 17209.30 272.80 63.08 59.19 400| 18911.10 790.60 23.92 49.41
600| 17320.10 258.80 66.92 59.83 600| 18962.40 797.20 23.79 49.83
800 17343.20 257.60 67.33 58.13 800| 19053.90 788.20 24.17 49.26
1000| 17350.00 240.20 72.23 60.49 1000| 19045.50 788.40 24.16 49.28
1200| 17453.30 265.00 65.86 58.58 1200| 19192.40 786.00 24.42 49.13
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Table 12: Experiments Data of The Random Target Strategy

Subject #Walks Avg Avg Avg Avg Subject #Walks Avg Avg Avg Avg
#Runs #Mutants Cost Capab #Runs #Mutants Cost Capab
Box 1 200 658.10 48.40 13.60 12.10] Box2 200 2116.00 194.40 10.88 48.60
400 1125.50 93.00 12.10 11.63 400 4429.70 423.40 10.46 52.93
600 1611.70 141.20 11.41 11.77 600 6129.70 593.00 10.34 49.42
800 2359.80 216.00 10.93 13.50] 800 8235.90 803.60 10.25 50.23
1000 2806.00 260.60 10.77 13.03 1000 10298.00 1009.80 10.20 50.49
1200 3586.00 338.60 10.59 14.11 1200 12570.00 1237.00 10.16 51.54
Circle 1 200 969.20 79.60 12.18 19.90| Circle 2 200 2209.70 203.60 10.85 50.90
400 1846.30 165.00 11.19 20.63] 400 3933.20 373.80 10.52 46.73
600 2849.60 265.00 10.75 22.08] 600 5989.60 579.00 10.34 48.25
800 3631.70 343.20 10.58 21.45] 800 7910.00 771.00 10.26 48.19
1000 4785.90 458.60 10.44 22.93] 1000 9542.00 934.20 10.21 46.71
1200 5468.00 526.80 10.38 21.95] 1200 11978.00 1177.80 10.17 49.08
Line 1 200 2095.40 192.00 10.91 48.00 Line 2 200 2560.20 238.80 10.72 59.70
400 4121.20 392.60 10.50 49.08 400 4907.10 471.00 10.42 58.88
600 6119.40 592.00 10.34 49.33 600 7129.60 693.00 10.29 57.75
800 7828.00 762.80 10.26 47.68 800 9459.80 926.00 10.22 57.88
1000 9738.00 953.80 10.21 47.69 1000 11802.00 1160.20 10.17 58.01
1200 11654.00 1145.40 10.17 47.73 1200 14162.00 1396.20 10.14 58.18
Sin1 200 2585.40 241.20 10.72 60.30 Sin 2 200 2136.40 196.60 10.87 49.15
400 5122.20 492.60 10.40 61.58 400 4176.40 398.00( 10.49 49.75
600 7735.50 753.60 10.26 62.80 600 6285.50 608.60 10.33 50.72
800 10124.00 992.40 10.20 62.03] 800 8096.00 789.60 10.25 49.35
1000 12720.00 1252.00 10.16 62.60| 1000 10100.00 990.00 10.20 49.50
1200 14898.00 1469.80 10.14 61.24 1200 12224.00 1202.40 10.17 50.10
Triangle 1 200 532.70 36.00 14.80 9.00|| Triangle 2 200 2145.10 197.20 10.88 49.30
400 1015.50 81.80 12.41 10.23 400 3942.10 374.60 10.52 46.83
600 1151.40 95.20 12.09 7.93 600 5701.90 550.20 10.36 45.85
800 1357.90 115.80 11.73 7.24 800 7599.90 740.00 10.27 46.25
1000 1880.00 168.00 11.19 8.40 1000 9817.90 961.80 10.21 48.09
1200 1922.00 172.20 11.16 7.18 1200 11184.00 1098.40 10.18 45.77

Appendix B. Data of The Case Studies

B.1. Accuracy of the Machine Learning Models

Table 13 shows the quality of each model. Column Accuracy is the percentage of the items
in the dataset that are correctly classified by the model. Column Cross-validation score is the
average score of 10 fold cross-validations of the model. Column Accuracy on test data is as for
the first column but restricted just to the test set. Column Time is the total length of time in
seconds spent on training the model, cross-validating the model and calculating the accuracies
of the model on the whole data set and on the test set. It gives an indication of the time efficiency

of the model.
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Table 13: Model Quality

Red Wine Quality Mushroom Bank Churners
Cross- N Cross- Cross- "
Model Accuracy Validation Accuracy on Time Accuracy | Validation Accuracy on Time Accuracy | Validation Accuracy on Time
score test data (second) Score test data (second) Score test data (second)
DT 79.80% 61.29% 85.00% 0.28] 100.00% 100.00% 100.00% 0.28| 97.41% 94.70% 96.84% 1.02
DT2 100.00% 61.36% 62.50% 0.28] 100.00% 100.00% 100.00% 0.20| 100.00% 93.41% 94.97% 1.33
KNN 100.00% 64.80% 99.38% 0.47] 100.00% 94.65% 98.94% 3.70] 100.00% 88.02% 98.32% 10.80]
KNN2 100.00% 63.52% 70.00% 0.39] 100.00% 95.51% 94.87% 3.06] 100.00% 88.08% 87.56% 8.58
LR 60.91% 59.66% 67.50% 150.13] 100.00% 100.00% 100.00% 21.63] 89.41% 88.89% 89.24% 6.25
LR2 59.90% 59.00% 65.00% 149.22| 100.00% 100.00% 100.00% 18.63 89.28% 88.86% 89.44% 5.98
NB 56.47% 54.79% 60.63% 0.15] 70.78% 70.94% 72.57% 0.22| 89.61% 89.55% 90.33% 0.31
NB2 55.53% 53.16% 58.13% 0.16] 69.92% 70.11% 71.86% 0.20] 89.60% 89.30% 89.63% 0.30
SVM 51.03% 50.41% 60.63% 4.13] 99.79% 99.77% 99.65% 6.28| 83.93% 83.93% 82.72% 57.72
SVM2 49.90% 49.54% 60.63% 3.47] 99.78% 99.74% 99.65% 5.63] 84.07% 84.07% 82.72% 46.67
SV 94.37% 65.23% 93.13% 160.25] 100.00% 100.00% 100.00% 23.98| 98.65% 93.62% 98.42% 21.27|
SV2 93.40% 64.07% 71.88% 151.68] 100.00% 100.00% 100.00% 22.77| 98.78% 93.31% 93.98% 16.95
HV 86.30% 65.04% 87.50% 153.00] 100.00% 100.00% 100.00% 23.46 98.46% 92.09% 97.73% 19.38]
HV2 86.10% 63.87% 67.50% 151.28] 100.00% 100.00% 100.00% 22.36| 98.55% 92.00% 92.10% 16.33
Stackl 95.76% 66.78% 69.38% 1596.15] 100.00% 100.00% 100.00% 231.32| 100.00% 93.98% 94.67% 160.25
Stack3 95.07% 65.88% 68.75%| 1725.27] 100.00% 100.00% 100.00% 257.51] 80.55% 91.07% 92.00% 204.43

B.2. Data of The Case Study on Red Wine Quality

Table 14, 15, 16 and 17 give the average numbers of runs, mutants, cost and capability of
testing the red wine quality classification models using three strategies.
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Table 14: Average Number of Runs

(a) Random Target Strategy

Walks| DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svm2 SVM2
100| 1424.20 1524.80 1419.80 140130 1458.60 1417.30 1318.00 1299.50 1528.80 1523.50 1380.30 1460.00| 1447.50 1460.30 1004.00| 985.20]
200| 2754.00 3044.20 2694.80 275230 2858.90 2871.60 2674.70 2665.80 2993.20 3000.90 2790.20 2944.10| 2759.50 2821.80 2039.70| 2045.50
300 4185.10 4301.60 4046.60 4126.30 4321.60 4248.40 3803.30 3888.00 4463.90 4468.00 4051.20 4315.20] 4250.30| 4192.70 2913.40| 2919.20
400| 5477.80 5754.50 5320.40, 5397.20 5704.60 5582.60, 5032.40 5083.40 5868.40 5981.70, 5523.20, 5770.60| 5433.60| 5657.60 3877.20| 3986.10,
500 6832.80 7172.20 6668.90) 6726.10 7066.20 7018.60 6359.30 6379.40 7467.70 7392.60 6875.30, 7216.50| 7050.20| 6839.00 4793.40 4889.90
600 8148.50 8512.20 8067.30, 8218.30 8481.10 8410.60 7510.20 7771.70 8663.30 8808.60 8237.70, 8565.60| 8234.60 8304.50 5852.30] 5739.00
700| 9386.30 9968.50 9423.40| 9330.00; 9837.30; 9712.30| 8878.20; 8937.00; 10116.40 10130.10 9523.90| 9814.80| 9565.80| 9709.70. 6451.80| 6772.80.
800| 10657.40 11429.50 10548.20| 10682.90° 11250.20° 11031.60| 9957.10, 10062.30' 11404.60 11418.60 10893.70] 11308.10 10819.10 10881.80° 7543.30| 7630.50
900| 11878.00 12756.70 11738.80] 11888.40° 12338.20° 12382.80] 11124.50] 11259.50 12973.40 12873.30] 12000.30] 12515.70] 12075.20 12285.20° 8547.80| 8580.40
1000| 13225.10 14108.30 13123.00] 13361.90° 13901.10° 13695.70] 12407.00 12627.00 14436.90 14394.40] 13354.00] 13854.50] 13554.30] 13802.60° 9376.50 9393.00
Total| 73969.20 78572.50 73051.20)  73884.70| 77217.80 76371.50, 69064.70)  69973.60  79916.60 79991.70 74629.80 77765.10| 75190.10] 75955.20 52399.40|  52941.60
(b) Random Walk Strategy
Walks DT D12 HV. HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svm2 SsVm2
100) 2590.30 2558.20 2422.00 2367.60| 2183.60] 2123.30| 2531.70; 2523.20 2642.40| 2664.10 2354.89 2091.89 218422 2240.22 2024.78| 2033.44
200| 5153.50 5021.90| 4829.50 4714.80) 4337.30, 4267.70| 5039.20, 5073.60 5220.50| 5278.60 4233.70 4035.10 4150.40 4171.40 3784.50, 3816.80
300 7750.40 7626.80| 7189.00 7140.10| 6447.50 6393.60) 7891.70 6378.00 6053.50 6373.20 6387.70 5858.40 5846.40
400| 10299.90 10133.90 9574.30 9442.10 8682.30, 8488.60 10560.31 8459.10 8163.70 8543.10 8566.50 7904.20 7860.20
500| 12947.00 12605.50 11904.50 11909.60)  10752.50 10552.20 131457 10561.90 10259.40 10753.10 10792.40 9810.20| 9919.70
600| 15387.00 15192.60| 14329.70 14133.60 12948.30] 12730.00 15765.40 12696.00 12259.80 12870.60 12993.10° 11836.80] 11851.80
700{ 17930.00 17654.40| 16723.40 16608.30| 15184.10] 14734.90| 18378.20 14772.20 14535.60 15100.30 15164.60° 13863.20] 13883.20
800| 20505.20 20187.00] 19164.10° 18974.00| 17118.10] 16882.90 21006.90 16741.50 16458.40 17122.00 17277.60 15845.50| 15945.00
900| 23028.90 22743.80 21517.80|  21369.30| 19394.50 19088.20| 2351870 19023.90 18600.00 19327.80 19624.70 17803.00( 17797.70
1000| 25706.30 25088.60 23690.70 23595.30] 21408.10) 21014.70| . N 26145.80 21074.80 20630.10 21545.10 21788.90° 19839.40| 19883.10
Total| 141298.50 138812.70 131345.00| 130254.70| 118456.30| 116276.10 138114.80| 138331.80| 144009.10| 144355.40 116295.99| 113087.49| 117969.82| 119007.12 108569.98| 108837.34
(c) Directed Walk Strategy
Walks|DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 Tsv V2 SVM2 SVM2
100| 27850.40 29630.40 32213.60] 3215150 32030.40] 31320.80] 37311.70 36660.00] 38763.70| 39148.60 32600.60| 35323.40] 30361.00 30544.90° 24423.70| 24407.40
200] 55491.50 59202.40 64139.60] 64347.70| 63689.70] 62068.30] 74556.00 73150.90] 77805.90] 78055.50 65769.80] 70416.80| 60658.80 61265.40' 48835.60 48758.90
300 83210.90] 89032.40 96193.30| 97021.90| 96434.60 94775.90|  111660.80| 109848.30| 116518.80| 117029.80 98782.90| 105028.50| 91091.60 91428.10 73187.00f  73296.30
400| 110713.30 118344.10 128053.30| 129314.00f 126686.50) 124279.40| 148857.00| 146589.10 155884.50[ 156468.50 131512.80| 140490.40| 121526.00| 121521.90 97478.20| 97668.80
500| 138670.70| 148470.20 16045110/ 161796.00| 158961.40 156471.50 186179.10| 183343.90 194609.60] 195442.20 164795.00| 175480.50| 151711.80 151886.80 121875.20| 121951.20
600| 166578.60| 177847.60 192755.80 194272.70| 192250.00 187572.60 223843.80| 219962.20| 233245.60] 234630.00 197714.10| 211149.90| 18284320 182795.90 146436.80 146573.10
700| 194199.00] 207179.30 224927.60| 226342.10| 223599.90| 219722.80| 260790.50| 256594.00| 272550.50| 273606.60| 229843.20 245391.60 212305.20| 213053.50; 170563.10 170510.40
800| 221685.90] 237607.10 256610.80| 258860.70 255521.40) 251556.40] 298127.00{ 293902.40( 310813.20{ 312711.20 264299.80| 281040.90| 243461.60| 242993.20 194962.10| 195256.50
900| 249621.30 267298.80 288640.70| 291582.70 287060.40) 282013.90| 335621.70| 330158.80| 350305.20] 351647.90 296237.80| 316788.60| 274052.70| 273791.10 219511.50| 219538.10
1000| 277595.40 296649.20 321649.90| 323278.80| 318602.70) 313862.20| 373160.50| 36702350 389091.20] 390583.40 330021.70| 351045.40| 304143.10| 304067.20 243734.40| 243792.20
Total| 1525617.00( 1631261.50| 1765635.70| 1778968.10| 1754837.00] 1723643.80) 2050108.10| 2017233.10| 2139588.20) 2149323.70| 1811577.70| 1932156.00) 1672155.00| 1673348.00; 1341007.60| 1341752.90
Table 15: Average Number of Mutants
(a) Random Target Strategy
Walks! DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svm2 svm2
100 121.70 120.00 91.50 83.00 41.70 48.10 99.20 99.90 125.10 126.20 85.90 81.90 103.80 98.80 34.20 37.20
200 235.50 247.40 166.40 171.80 82.90 100.60 205.50 207.50 245.60 249.00 177.40 168.90 196.80 197.60 74.90 76.70
300 359.20 345.60 257.60 258.20 130.20 149.80 292.40 306.60 371.00 376.40 250.90 246.30 304.10 302.30 107.00 106.80
400 474.10 468.40 327.30 337.60 172.40 201.40 388.90 400.60 486.80 505.00 357.10 330.10 395.50 405.20 142.90 152.30
500 592.90 592.10 416.40 427.10 223.00 250.60 496.50 510.10 628.70 627.50 440.40 418.30 517.20 499.30 182.40 188.40
600 715.90 706.60 521.70 532.80 247.30 300.30 589.90 621.30 730.60 753.40 522.50 497.70 598.40 597.10 218.50 223.80
700 822.30 828.40 602.30 600.40 299.30 351.10 701.60 720.90 857.60 867.50 605.50 567.50 709.20 714.30 250.90 262.10
800 939.90 950.00 688.50 695.60 347.70 404.10 784.30 818.10 963.90 989.30 716.10 661.80 806.50 781.00 294.40 300.50
900| 1054.40| 1065.30 761.10 777.10 384.90 450.70 891.10 920.20| 1108.60| 1115.80 793.00 743.30 894.60 902.90 337.30 339.20
1000| 1179.60| 1196.30 849.50 874.10 428.80 517.00 997.60| 1036.80| 1240.90| 1252.30 871.80 828.10| 1010.90| 1019.20 374.80 379.30
Total| 6495.50| 6520.10| 4682.30| 4757.70| 2358.20| 2773.70| 5447.00 5642.00| 6758.80 6862.40| 4820.60 4543.90| 5537.00| 5517.70| 2017.30
(b) Random Walk Strategy
Walks' DT D12 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svm2 svm2
100 139.40 174.50 128.30 132.50 104.70 114.10 126.90 129.60 181.00 186.00 113.90 106.20 100.10 118.20 50.50 48.30
200 286.60 344.80 254.80 252.20 213.90 230.30 253.40 262.80 366.60 366.30 221.70 231.10 213.40 235.80 89.00 95.40
300 436.90 517.70 378.10 387.50 316.80 335.50 389.40 388.20 547.80 549.50 341.20 345.60 327.90 360.60 148.50 148.10
400 579.90 681.50 504.70 498.30 426.10 454.90 504.50 521.60 739.70 734.10 452.40 466.80 439.80 497.20 192.30 201.10
500 725.80 855.00 638.30 637.70 529.30 551.90 640.10 644.00 925.40 915.70 557.80 590.10 560.90 603.00 235.80 256.70
600 864.30| 1022.80 778.00 765.30 642.50 686.40 773.00 769.90| 1096.30| 1103.80 668.60 710.40 670.50 750.20 289.20 299.20
700| 1001.40| 1195.70 891.90 893.80 741.40 782.70 887.00 903.40| 1283.60| 1289.60 791.60 840.40 773.70 874.60 335.50 352.60
800| 1148.00 1370.30| 1029.20| 1017.70 849.20 890.20| 1032.50| 1019.00( 1455.00| 1469.20 885.70 951.50 886.90 985.40 394.40 406.20
900| 1295.50| 1555.50| 1140.40| 1136.90 965.40| 1011.30| 1147.40| 1157.00( 1649.10| 1654.30| 1009.90| 1073.80 982.00 1117.40 430.90 452.10
1000| 1442.10| 1709.20| 1271.50| 1261.40| 1068.50| 1109.20| 1275.30| 1270.30 1839.00| 1826.90| 1114.30 1174.40| 1123.90| 1242.30 493.40 514.60
Total| 7919.90| 9427.00 7015.20| 6983.30| 5857.80| 6166.50| 7029.50| 7065.80| 10083.50| 10095.40| 6157.10| 6490.30| 6079.10| 6784.70| 2659.50| 2774.30
(c) Directed Walk Strategy
Walks DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 SVM2 SVM2
100 925.20| 1269.50| 1535.90| 1559.60| 1476.70| 1441.10 2320.70 2253.10 2724.40 2778.30| 1606.00 2011.80| 1200.40( 1291.80 393.10 395.00
2 1814.41 25.30| 3017.00 3125.5 2918.2 2798. 4636.5 4473.10 5490.7 5509.6 3281.8 3978.90| 2398.91 25.61 780.. 786.
3 2731.6 29.40| 4549.30| 4734.3 4501.2 4439 6917.7 6726.50 8209.1 8262.6 4976.0 5899.60| 3616.7 65.8 1159. 1186.
4 3608.2! 21.40| 6048.20( 6340.7f 5710.2 5576. 9207.7 9001.60( 11034.4( 11081.0¢ 6582.7 7944.40( 4838.0 97.7 1543.. 1584..
5 4534.71 55.30| 7573.70( 7927.7 7245.9 7187. 11524.5 11245.10| 13729.3f 13859.8 8283.6 9904.40| 5996.2 63.6/ 1930.. 1977.
600| 5491.20| 7618.80| 9162.30| 9553.70| 8897.60| 8552.50| 13913.30( 13473.10| 16440.10| 16641.60( 9975.10| 11967.60 7332.70| 7699.70| 2328.40| 2391.40
700| 6368.30| 8840.00| 10678.50| 11064.80| 10289.60| 10135.40| 16170.40( 15728.00| 19245.20| 19389.80( 11514.20| 13808.90 8389.60| 8928.30| 2679.40| 2725.90
800| 7247.90| 10192.90| 12140.50| 12738.20| 11764.30 11612.70| 18502.10( 18097.20| 21875.90| 22139.10( 13356.00| 15865.50( 9703.90| 10125.40| 3083.00| 3155.60
900| 8193.00| 11464.10| 13606.90| 14340.90| 13209.50 12959.90| 20872.40( 20254.80| 24726.40| 24909.60( 14910.90| 17973.50( 10936.20| 11481.00| 3480.50| 3530.60
1000| 9152.20| 12704.70 15316.40| 15816.70| 14585.90| 14466.40| 23188.90| 22526.00 27462.40| 27642.60| 16688.90| 19764.00| 12089.10| 12718.20| 3848.60| 3926.20
Total | 50066.70| 69821.40| 83628.70( 87202.10| 80599.10( 79169.90| 127254.20| 123778.50| 150937.90| 152214.00| 91175.20| 109118.60| 66501.70( 70197.10| 21227.20| 21658.70
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Table 16: Average Cost

(a) Random Target Strategy

Wi DT DT2 HV H KNN KNN2 LR2 NB NB2 Stack Stack3 Ssvm2 svm2 |
.70 7 .5 34.98 29.47 B .01 22 .07 .07 7.83 9. 6.48
.69 .1 34.49 28.54 i .85 .19 12.05 73 7. 7. 6.67
.65 .7 33.19 28.3 i 8 .03 .87 .15 7. 7. 7.33
.55 .2/ 33.09 27.7. 8 8 .06 .84 .47 7. 7. .17
.52 11 .0: .69 28. R 8 .88 .78 .61 7. 28 .95
8 .05 .4 4.29 28. 8 86 .69 77 7. 78
1 .03 .65 7 27. .65 80 .68 73 7. .71
8 .34 .03 .3 27. 7 83 .54 .21 7.09 .62
901 .27 .97 .4 27. 4 70 .54 13 84 .34
100t .21 79 .4 32 26.49 4 63 .49 .32 .73 .02
Average .47 .17 .71 33. 27.90 .8 .54 .92 .76 .62 .27 26.57 .91
StDev| .18 .27 .34 1. 0.80 .26 E .20 .21 .34 .33 1.28 .7!
(b) Random Walk Strategy
Walks DT DT2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 SsVMm2
100 18.58 14.61 20.86 1 1 19.95 19.47 14.60 14.32 20.68 19.71 21.82 18.95 40.09
200 17.98 14.5 20.28 1 3 19.89 19.31 14.24 14.41 19.10 17.41 19.45 17.69 42.52
00 7.74 7 20.35 6 9.39 46 4.40 36 69 7.5 4 7. 9.45
00 7.76 .8’ 20.38 6 04 .37 4.13 39 .71 7.4 2 7. 1.10
0 7.84 .74 20.. 12 7. .58 4.17 7.39 7 7. 1.60
0 7.80 14.85 20. .55 5 .58 4.31 7. .20 7. .93
0 7.90 7 20.: .83 7 .55 4.32 7. .52 7.
80 7.86 7. 20. .97 4 .61 4.39 7. .31 7.53
90 7.78 20. .87 27 7. 68 7.56
100 7.83 g 20.0: .95 22 7. .17 7.54
Average 7.91 . 20.31 .81 4.31 .S 7.63 .62 | 7.68 E
StDev| 0.25 E 0.24 .21 .13 . ! 0.73 .79 0.49 E
(c) Directed Walk Strategy
Walks DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV, sv2 SsVm2 SsVMm2
30.10 4 7 0.62 g 73 .08 .27 .23 09 30 7.56 65 62.13 79
30.58 4 6 0.59 8 .18 .08 .35 17, 17 04 7.70 33 62.57 .99
30.46 5 .14 0.49 8 .35 .14 .33 .19 16 85 7.80 65 63.10 .80
30.68 7 .17 0.39 . .29 17 .28 13 12 98 7.68 . 84 63.14 .65
30.58 6 .19 0.41 77 .16 .30 7 10 89 7.72 87 63.14 .68
600 30.34 23.34 21.04 20.33 21.61 21.93 16.09 16.33 14.19 14.10 19.82 17.64 23.74 62.89 61.29
700 30.49 23.44 21.06 20.46 21.73 21.68 16.13 16.31 14.16 14.11 19.96 17.77 23.86 63.66 62.55
800 30.59 2331 21.14 20.32 21.72 21.66 16.11 16.24 14.21 14.12 19.79 17.71 24.00 63.24 61.88
900 30.47 23.32 2 20.3 21.73 21.76 16.08 16.30 14.17 14.12 19.87 17.6: 23.85 63.07
1000 30.33 23.35 2 20.4 21.84 21.70 16.09 16.29 14.17 14.13 19.77 17.71 23.91 63.33
Average 30.46 23.37 21. 20.44 21.77 21.80 16.11 16.30 14.18 14.12 19.93 17.71 23.77 63.03
StDev 0.17 0.09 E 0.1/ .20 .27 .03 .03 | .03 | .03 .16 0.0° 0.19 0.42
Table 17: Average Capability
(a) Random Target Strategy
Walk DT DT2 HV HV: KNN KNN2 LR LR2 [ N8B | NB2 Stack Stack3 sV SV SsVvM2 SVM2
60.85 60.00 45.75 a 49.60 49.95| 62.55] 63.11 42.95 .95 51.90 49.40 17.10 18.60
58.88 61.85 4 0 4 51.38 51.88 1.40 62.2 44.35 42.23 49.. 49.40 18.73 19.18
59.87 57.60 4 X . .73 1.1 1.83 62.7: 41. 41.05 50.f 50.38 7.83 7.80
0 59. 58.55 4 .2 5! .61 .0: 0.85 63.1: 44 . 41.26 49.. 50.65 7.86 04
5 59.29| 59.21 y 7 .3 .65 0. 2.87 62.7! 4 41.83 51. 49.93 8.24 84
6 59.66/ 58.88 43.. -4 .6 .16 7 0.88 62.7: 4 41.48 49.8 49.76 8.21 65
7 58. 59.17 43. .8 -3 .11 4 1.26 61.91 4 40.54 50.66 51.02 7.92 72
8 58.7. 59 4 4 7. 02 1 0.24 61.8: 44 41.36 50.41 48.81 40 78
900 58.58 59. 42.28 43.1 21.38 25.04 49.51 . .59 61.99 44. 41.2¢ 49.70 50.16 18.74 1 4
1000 58.98 59. 42.48 43.71 21.44 25.85 49.88 B .05 62.62 43.! 41.4 50.55 50.96 18.74 18.97
Average 59.28 59.; 42.71 43.00 21.37 25.07 49.56 .14 .55 62.51 43, 41.3 50.41 50.05 18.18 18.74
StDev/| 0.69 1.1 1.33 .80 .52 0.44 .80 .68 .80 0.47 0. .41 0.90 0.73 .52 .37
(b) Random Walk Strategy
Walks| DT HV HV2 KNN KNN2 LR LR2 | NB | NB2 Stack Stack3 sV sv2 SVM2
0 69.70 64.1! 66.25 5235 57.05| 63.45 64.81 .50 93.0 56.95 53.11 .05 59.. .15
0 71.65 63.7/ 63.05 53.48 58|  63.35] 65.71 .65 .5 55.43 57.7: 35 58. .85
0 72.82 63.0: .58 52.80 64. 64.7/ B .5 56.87 57.4 .65 60.. .68
0 72.49 63.0! 29 53.26 63. 65.21 - 7 56.55 58.. .98 62 .14
0 72.58 63.83 77 52.93 64. 64.41 ! .5 55.78 59. .09 60.. 67
600 72.03 64.83 78 53.54 64. 64.11 B .98 55.72 59.. 55.88 62.! 4.93
700 71.53 3.7 -84 52.91 3.36 4.53 1.69 2. 56.54 60.03 55.21 2.47 25.1!
800 71.75 4. .61 53.0: 4.53 3.69 0.94 1. 55.36 59.47 55.4: 1.59 25.3
900 71.97 .42 .16 53.6: 74 4.28 1.62 1. 56.11 59.66 54.51 2.08 25.1.
1000 72.11 46 .07 53.4: 77 3.52 1.95 1. 55.72 58.72 56.21 2.12 25.7:
Average 71.86 .86 B .74 53.1. .86 4.50 1.60 1. 56.10 58.29 54.6. 1.14 24.9:
StDev| 0.87 .66 .51 .08 .40 0.60 | 0.66 0.63 0.46 .59 .99 1.82 1.39 0.6
(c) Directed Walk Strategy
DT DT2 Hv2 KNN_ | KNN2 R LR2 NB | NB2 Stack Stack3 S S SsvM2 SVMm2
21.03 28.85 91 35.45 33.56 .75 74 21 .9: 63.14 6.5 72 7.28 B .93
20.62 28.70 28 35.52 33.16 .80 .69 .83 .3 62.61 7.2 21 7. .87
20.69 01 4 35.87 34.10 .63 4 .9 .1 62.60 7.7 .69 7. B .79
| 8800| 20.50 53 3 36. 32.44 .69 -3 .1 .71 62.96 7.4 .14 7. 28. 77
1 20.61 89 4 36. 32.94 .67 -3 -1 .4 63.00 7.65 .02 7. 28. 77
3200 20.80 86 7 36. 33. .4 7 .0: .2 .04 7.78 33 7. 29. .8
5400 20.68 70 g 35. 33. .9 5 2.48 .95 7.38 4.83 7.2 28.99 .7 .85
7600 20.59 96 .49 36. 33. .9 5 62.15 .90 7.94 7 7.57 7 .7
9800 20.6! 95 .36 33. 7 7 62.44 .90 7.65 7.62 .7
2000 20.8¢ 87 1.81 | 33.1! 88 7 62.41 2.82 7.93 44 7.48 .7
Average 20.70] 28.83 .55 33.32 32.64 .5° B 62.34) 62.89 7.52 4s.. 7.44 B .7 .
StDev| 0.1 0.15 .21 0.27 0.45 0.57 .16 B 0.21 0.18 0.42 . 0.18 . .0° .
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B.3. Data of The Case Study on Mushroom Edibility
Table 18, 19, 20 and 21 give the average numbers of runs, mutants, cost and capability of
testing the mushroom edibility classification models using three strategies.

Table 18: Average Number of Runs

(a) Random Target Strategy

Walks| DT b2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV V2 SVM2 sVm2
100 330.80] 337.50| 322.40 323.40 281.50] 296.20 22430 226.80 197.80 197.00 327.50 338.00 325.30 322.70] 251.60' 247.20
200 658.60] 654.90| 643.90° 642.30 577.50] 590.90 441.90 443.70 390.50 391.20 646.70 701.30] 658.20 644.50] 503.50 478.50
300 983.30] 983.20| 973.70° 972.20 847.10] 870.70 665.90 661.70 577.60 581.00 975.50 1020.40 97430 970.90] 748.80° 706.50
400| 1294.50 1300.30 1284.30 1282.20 1115.50 1144.60 865.40 874.20 762.60 760.20 1285.70 1370.20 1289.10 1286.60 981.00° 945.20
500 1602.80 1627.40 1590.00 1563.50 1376.00 1433.80 1091.80 1090.70 943.00 940.80 1589.80 1698.30 1597.00 1585.80 1212.00 1180.20
600| 1930.30 1957.70 189230 187530 1658.30 1717.70 1297.50 1289.20 1117.50 1117.60 1900.10 2011.10| 1917.10 1909.10 1427.30 1384.00
700] 2262.40 2231.60 2182.90 2185.60 1918.50 1988.60 1488.10 1493.00 1282.30 1283.30 2190.60 2361.40, 2195.90 2198.50, 1663.40 1587.40
800| 2564.30 2555.40 251530 2498.50 2173.90 2245.90 1678.50 1674.60 1453.40 1451.60 2486.10 2662.10) 2507.30 2478.00, 1882.90 1821.20
900| 2826.00 2842.50 2807.70 2785.40 2450.00 2510.40 1871.00 1855.20 1611.50 1612.60 2746.50 2977.20) 2803.20 2809.80 2091.90 2013.60
1000] 3135.90, 3174.30, 3072.20 3088.70 2686.20 2748.10 2070.60 2051.20 1768.40 1769.30 3070.60 3302.70 3089.60 3095.90, 2326.90 2204.50
Total| 17588.90; 17664.80 17284.70 17217.10|  15084.50 15546.90 11695.00|  11660.30 10104.60 10104.60 17219.10 18442.70 17357.00| 17301.80 13089.30 12568.30
(b) Random Walk Strategy
Walks DT 12 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV V2 sVm2 svm2
100 1723.90, 1739.60 1658.20 1692.50 1938.80 1971.40 1826.90 1806.80 2082.90 2080.70 X 1791.10 1643.30 1709.50 1837.90 1816.00
200( 3463.60) 3442.20 3324.70 3328.70, 3881.00| 3920.50 3587.50| 3620.50 4163.10 4171.10| 3315.80 3493.90 3303.60 3327.50 3595.20 3670.00
300] 5199.30 5166.90 5000.70, 5004.40 5831.60| 5851.50, 5387.30] 5385.10 6249.80 6256.10 5002.40 5271.10 5079.80, 4964.20 5426.60 5497.40
400 6919.80 6922.20| 6614.90 6671.60) 7760.60| 7813.30, 7248.70| 7193.90 8324.50 8330.30 6697.50 7068.00 6669.50 6760.50 7281.80 7332.60
500( 8652.40 8609.10 8316.80, 8385.20, 9772.40| 9792.40 8954.70| 9018.20 10417.20 10399.40 8339.90 8794.70 8244.10 8271.50 9056.30 9080.10
600| 10384.00 10275.50] 10008.60| 10011.80] 11625.00] 11777.10] 10822.80 10754.70 12472.10] 10041.70° 10555.40 9984.60 10004.80 10945.30 10884.10
700( 12069.80) 11961.80 11698.30] 11599.60| 13627.60 13644.00| 12536.50 12575.80 14571.00 11644.10' 12267.70 11626.90| 11649.90 12636.20 12714.90
800| 13777.90 13753.30] 13330.80] 13285.70] 15554.00] 15695.20| 14449.60| 14378.60 16630.70 13365.50/ 13945.30 13247.50] 13297.70 14514.10 14567.80
900| 15643.40 15580.60 14998.50| 14944.60| 17576.50] 17540.90| 16182.50] 16158.40 18716.90 14972.20] 15680.00 15079.40] 15076.10 16292.60 16310.40
1000{ 17272.50, 17154.80 16545.00] 16595.60| 19395.30 19564.20| 17985.70 17917.50 20779.90] 16643.10] 17453.20 16713.50] 16645.60 18147.00 18130.40
Total| 95106.60, 94606.00 91496.50 91519.70| 106962.80|  107570.50 98982.20| 98809.50 114408. 100003.70
(c) Directed Walk Strategy
Walks DT b2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 V. V2 SVM2 sVM2
100{ 10053.30, 10062.90] 9902.40 9925.40 9591.70 9631.00 10198.60 10223.00 10382.50] 10378.90] 9894.80 9996.40 9900.80, 9907.70 9648.30] 9670.90
200 20127.00 20117.40 19842.60 19851.50|  19186.80 19291.80 20450.70|  20434.60 20765.90| 20763.60 19825.60 19952.90 19854.20 19891.60 19224.10 19241.00
300{ 30171.10 30195.20] 29772.20 29692.10 28859.00 28995.60| 30662.90| 30671.10 31154.80| 31144.10] 29711.90| 29958.20° 29743.90| 29772.90 28855.30] 28961.60|
400| 40226.50 40231.60) 39658.30. 39729.00 38471.60 38659.00| 40904.50 40902.80 41550.70| 41520.30, 39764.50 39908.90° 39679.90] 39717.10 38439.30] 38518.70|
500| 50281.60 50281.50] 49560.50 49698.20 48230.40 48376.20| 5118150 51136.00 51918.40| 51897.80] 4962170 49906.10 49636.70 49668.40 47993.30] 48155.30]
600| 60377.20 60354.40] 59578.60 59591.70 57705.20 58010.40| 61382.00| 61313.10 62315.40| 62277.60] 59611.30| 59900.00° 59503.80] 59588.70 57767.40| 57964.90|
700| 70384.40 70397.20] 69463.40 69505.90 67425.80 67612.90| 71590.40| 71568.90 72682.30| 72659.00] 6954270 69907.80° 69508.90] 69429.80 67446.40| 67379.10]
800| 80482.20 80455.50, 79419.60 79521.40 77140.20 77401.30 81799.60| 81790.90 83070.00| 83047.40 79439.30] 79824.20° 79410.00] 79509.00 77117.00| 77105.80|
900| 90538.30 90503.40, 89280.00 89404.30|  86760.10 87043.60| 92016.90| 92057.20 93449.20| 93422.20 89352.10] 89825.50 89259.30, 89461.70 86775.40|  86739.70
1000{100531.90 100604.40 99317.00 99228.60 96232.10 96716.50| 102206.10| 102307.50| 103826.70| 103796.70, 99265.50| 99809.30' 99281.80) 99321.90 96380.70] 96129.90|
Total|553173.50, 553203.50 545794.60| 546148.10| 529602.90| 531738.30| 562393.20 562405.10| 571115.90| 570907.60 546029.40| 548989.30| 545779.30| 546268.80 529647.20( 529866.90|
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Table 19: Average Number of Mutants

(a) Random Target Strategy

Walks| bT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV, sv2 sVm2 sVm2
100 73.00 76.20 69.20 70.10 53.20 59.60 15.60 18.70 0.00 0.00 72.00 80.60 72.70 70.30 28.30 26.40
200 147.20 146.00 145.50 140.40 115.70 124.90 31.00 33.80 0.00 0.00 145.70 177.20 149.90 144.20 59.90 45.50
300 225.80 224.90 221.60 224.00 167.10 178.70 51.60 51.90 0.00 0.00 225.90 250.10 224.10 226.00 89.40 66.50
400 291.60 298.00 294.80 293.50 218.90 234.10 62.70 68.20 0.00 0.00 297.90 347.80 298.00 295.40 114.90 93.60
500 366.00 377.80 369.30 350.60 267.50 301.80 92.10 91.10 0.00 0.00 369.00 436.60 372.20 368.60 139.80 123.30
600 446.10 458.70 440.30 428.90 333.90 370.90 114.40 105.70 0.00 0.00 446.70 513.10 452.90 454.10 162.00 138.80
700 533.40 518.20 499.90 507.30 387.50 432.10 122.80 125.80 0.00 0.00 514.70 616.70 515.80 523.30 197.90 156.40
800 607.70 607.30 601.40 586.30 443.90 484.80 140.10 136.50 0.00 0.00 588.80 690.40 593.70 582.90 231.40 188.10
900 672.00 671.40 681.40 663.80 508.20 550.30 156.00 148.80 0.00 0.00 648.60 782.00 670.40 675.40 243.40 206.50

1000 749.00 775.80 734.60 741.30 559.60 596.00 180.00 171.60 0.00 0.00 734.80 874.50 744.90 752.70 293.90 231.30
Total| 4111.80| 4154.30| 4058.00 4006.20| 3055.50| 3333.20 966.30 952.10 0.00 0.00| 4044.10| 4769.00| 4094.60| 4092.90| 1560.90| 1276.40
(b) Random Walk Strategy

Walks| DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svm2 svm2
100 71.50 69.10 72.90 72.70 28.20 23.60 50.10 51.90 5.00 4.00 75.80 61.30 81.90 69.70 37.60 38.70
200 135.40 141.30 154.20 152.00 53.70 45.80 105.60 101.00 9.60 8.20 159.30 128.20 158.00 151.00 81.10 71.10
300 205.80 213.20 237.90 225.70 80.90 76.50 160.30 155.30 12.80 12.40 228.90 195.20 224.40 230.40 120.60 115.10
400 278.50 277.20 310.00 308.70 107.30 104.80 200.60 208.40 18.20 15.80 300.00 261.20 301.60 294.60 152.70 153.50
500 345.80 342.70 385.50 378.10 125.30 128.10 266.90 259.00 20.40 23.40 377.10 319.60 403.90 390.70 194.90 190.10
600 415.80 421.10 455.60 450.90 162.20 144.50 297.30 314.50 23.40 27.80 458.50 384.60 467.80 454.90 228.80 239.50
700 494.70 505.80 535.30 540.60 181.30 184.60 364.70 368.70 26.20 29.20 531.70 448.90 553.20 533.00 271.90 270.70
800 551.90 578.00 611.60 619.80 209.60 200.00 407.20 422.00 30.80 36.60 605.70 533.60 620.70 615.50 313.70 308.50
900 611.40 620.90 691.00 686.80 232.60 227.30 465.40 467.90 36.00 38.80 686.80 602.90 682.30 676.10 354.70 354.40

1000 695.50 713.80 789.90 762.60 264.20 249.90 514.20 528.90 48.60 47.60 764.20 658.90 752.10 756.90 387.40 398.00
Total| 3806.30| 3883.10| 4243.90| 4197.90| 1445.30| 1385.10| 2832.30| 2877.60 231.00 243.80| 4188.00| 3594.40| 4245.90| 4172.80| 2143.40| 2139.60

(c) Directed Walk Strategy

Walks! DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svm2 svm2

100] 318.20] 313.60] 442.40] 430.90] 521.50[ 504.40[ 332.20] 319.20 70.60 76.40] 441.40] 320.30] 464.00] 459.50] 422.70[ 392.90

200 626.50[ 605.00[ 894.70[ 890.50] 1047.20] 1001.30] 628.20] 643.10] 144.80[ 149.00] 903.80] 630.50] 875.20] 868.40] 869.60] 854.10

300 933.20[ 922.30[ 1328.40[ 1368.90] 1535.70] 1499.30] 950.40] 936.30] 205.80[ 225.00[ 1358.20] 935.60] 1361.00] 1336.70] 1302.20] 1192.60

400] 1251.40[ 1232.90[ 1793.70[ 1737.00] 2044.60] 1989.70] 1248.80] 1250.70] 282.00[ 305.80| 1745.70] 1252.10] 1785.60] 1764.80] 1757.60] 1657.60

500] 1565.60] 1546.60[ 2210.00[ 2211.60] 2494.20] 2472.10] 1524.30] 1550.20] 351.20[ 382.60| 2190.50| 1579.40] 2256.10] 2190.80] 2199.60] 2027.80

600] 1871.70[ 1850.80[ 2626.80[ 2617.50] 3095.30] 2985.20] 1865.50] 1879.20] 422.60[ 462.40| 2631.20] 1876.30] 2705.10] 2614.60] 2581.00] 2379.70

700] 2168.20[ 2166.10[ 3122.20[ 3114.80] 3499.90] 3499.50] 2165.80] 2187.50] 478.00[ 541.40| 3068.20] 2196.00] 3158.60] 3105.30] 2992.00] 2881.90

800| 2498.40[ 2496.20[ 3535.40[ 3478.90] 3994.40] 3972.50] 2497.30] 2504.50] 555.60[ 618.00] 3493.60] 2495.60] 3579.70] 3473.80] 3410.30] 3299.60

900] 2807.00] 2774.30[ 4004.10[ 3996.20] 4524.90] 4481.50] 2818.40] 2800.60] 625.40[ 679.20[ 4009.30] 2754.80] 4044.30] 3955.50] 3830.20] 3663.70

1000] 3121.20] 3093.70] 4352.00 4460.00] 5071.10] 4947.40] 3147.70] 3079.80] 709.40 756.40| 4438.00] 3129.90] 4463.50] 4413.60] 4205.90] 4155.00

Total| 17161.40] 17001.50] 24309.70] 24306.30] 27828.80] 27352.90] 17178.60] 17151.10] 3845.40[ 4196.20] 24279.90[ 17170.50] 24693.10] 24183.00] 23571.10] 22504.90

Table 20: Average Cost

(a) Random Target Strategy

Walks DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svm2 SVMm2
100 4.53 4.43 4.66 4.61 5.29 4.97 14.38 12.13[ #DIV/O #DIV/O 4.55 4.19 4.47 4.59 8.89 9.36
200 4.47 4.49 4.43 4.57 4.99 4.73 14.25 13.13| #DIV/O #DIV/0 4.44 3.96 4.39 4.47 8.41 10.52
300 4.35 4.37 4.39 4.34 5.07 4.87 12.91 12.75| #DIV/O #DIV/0 4.32 4.08 4.35 4.30 8.38 10.62
400 4.44 4.36 4.36 4.37 5.10 4.89 13.80 12.82| #DIV/0 #DIV/O 4.32 3.94 4.33 436 8.54 10.10
500 4.38 4.31 4.31 4.46 5.14 4.75 11.85 11.97| #DIV/O #DIV/0! 4.31 3.89 4.29 4.30 8.67 9.57
600 4.33 4.27 4.30 4.37 4.97 4.63 11.34 12.20[ #DIV/O #DIV/O 4.25 3.92 4.23 4.20 8.81 9.97
700 4.24 4.31 4.37 4.31 4.95 4.60 12.12 11.87| #DIV/O #DIV/0 4.26 3.83 4.26 4.20 8.41 10.15
800 4.22 4.21 4.18 4.26 4.90 4.63 11.98 12.27| #DIV/O #DIV/0 4.22 3.86 4.22 4.25 8.14 9.68
900 4.21 4.23 4.12 4.20 4.82 4.56 11.99 12.47| #DIV/O #DIV/O 4.23 3.81 4.18 4.16 8.59 9.75

1000 4.19 4.09 4.18 4.17 4.80 4.61 11.50 11.95[ #DIV/0! #DIV/0! 4.18 3.78 4.15 4.11 7.92 9.53

Average 4.34 4.31 4.33 4.37 5.00 4.73 12.61 12.35( #DIV/0! #DIV/0! 4.31 3.92 4.29 4.29 8.47 9.93

StDev. 0.12 0.11 0.15 0.15 0.15 0.14 1.14 0.42| #DIV/O! #DIV/0! 0.11 0.13 0.10 0.15 0.30 0.42

(b) Random Walk Strategy

Walks| DT DT2 HV HvV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 SVM2 Ssvm2
100 24.11 25.18 22.75 23.28 68.75 83.53 36.47 34.81 416.58 520.18 22.02 29.22 20.06 24.53 48.88 46.93
200 25.58 24.36 21.56 21.90 72.27 85.60 33.97 35.85 433.66 508.67 20.81 27.25 20.91 22.04 4433 51.62
3 25.26 24.23 21.02 22.17 72.08 76.49 3.61 4. 488.27 504.52 21.8! 27.00 22.64 21.55 45.00 47.76
4 24.85 24.97 21.34 21.61 72.33 74.55 6.14 4. 457.39 527.23 22.3. 27.06 22.11 22.95 47.69 47.77
El 25.02 25.12 21.57 22.18 77.99 76.44 3.55 4. 510.65 444.42 22.1. 27.52 20.41 21.17 46.47 47.76
6! 24.97 24.40 21.97 22.20 71.67 81.50 6.40 4. 533.98 448.64 21.9¢ 27.45 21.34 21.99 47.84 45.45
7 4.40 65 85 4 75.17 73.91 37 34.11 56.53 499.01 .90 27. 8 .86 4 7 6.97
8 .96 79 80 .44 74.21 78.48 .49 34.07 40.79 454.39 .07 26.. 0 4 7 7.22
9 .59 .09 71 .7 75.57 77.17 77 34.53 19.88 482.39 .80 26. 0 93 .02
10 83 .03 95 .7 73.41 78.29 .98 33.88 27.27 436.55 78 26. 8 .99 46.84 55

Average .96 .48 .65 21.98 73.34 78.60 .97 34.55 488.50| 482.60 .86 27. . 22.20 46.57 .31

StDev| .46 .57 .51 .54 4 3.82 11 0.56 51.43 33.93 .40 0. . 0.95 .34 .75

(c) Directed Walk Strategy

Walks DT DT2 HV HvV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 SsVMm2 sVM2
100 31.59 32.09 22.38 23.03 18.39 19.09 30.70 32.03 147.06 135.85 22.42 31.21 21.34 21.56 22.83 24.61
200 32.13 33.25 22.18 22.29 18.32 19.27 32.55 31.78 143.41 139.35 21.94 31.65 22.69 22.91 22.11 22.53
300 32.33 32.74 22.41 21.69 18.79 19.34 32.26 32.76 151.38 138.42 21.88 32.02 21.85 22.27 22.16 24.28
400 32.15 32.63 22.11 22.87 18.82 19.43 32.76 32.70 147.34 135.78 22.78 31.87 22.22 22.51 21.87 23.24
500 2.1, 2. 22.43 22.47 19.34 19.57 .51 2.99 147.83 135.65 22.65 1. 22.00 22.67 21.82 23.75
600 2.2 2. 22.68 22.77 18.64 19.43 .91 2.63 147.46 134.68 22.66 1 22.00 22.79 22.38 24.36
700 2.4 2. 22.25 22.31 19.27 19.32 .0! 2.72 152.06 134.21 22.67 1. 22.01 22.36 22.54 23.38
800 2.2 2. 22.46 22.86 19.31 19.48 .71 2.66 149.51 134.38 22.74 1. 22.18 22.89 22.61 23.37
900 2.2! 2.62 22.30 22.37 19.17 19.42 32.65 2.87 149.42 137.55 22.29 2. 22.07 22.62 22.66 23.68

1000 2.2 2.52 22.82 22.25 18.98 19.55 .47 3.22 146.36 137.22 22.37 1. 22.24 22.50 22.92 23.14

Average 32.17 32.57 22.40 22.49 18.90 19.39 32.57 32.63 148.18 136.31 22.44 31.86 22.06 22.51 22.39 23.63

StDev| 0.23 0.31 0.22 0.40 0.37 0.14 0.75 0.43 2.52 1.76 0.32 0.36 0.34 0.39 0.39 0.64
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Table 21: Average Capability

(a) Random Target Strategy

Wwal DT DT2 HV HvV2 KNN KNN2 LR LR2 NB_ | NB2 Stack Stack3 sV Ssv2 Ssvm2 Ssvm2
0 6.50 3 .60 35.05 26.60 29.80 7.80 .35 0. 0. 6.00 0.30 6.35 35.15 - .20
0 6.80 B .38 35.10 28.93 31.2 7.75 .45 0. 0. 6.43 4.30 7.48 6.05 S .38
0 7.63 g .93 7.33 27.85 29.7: 8.60 .65 0. 0. 7.65 .68 7.35 7.67 S .08
0 6.45 7 85 6.69 27.36 29.2 7.84 53 0. 0. 7.24 48 7.25 3 70
50 6.60 7.7 .93 5.06 26.75 30.1: 9.21 .11 0. 0. 6.90 43.66 7.22 6.86 13. 12.33
60 7.18 8.2. .69 5.74 27.83 30.9 9.53 .81 0. 0. 7.23 42.76 7.74 7.84 13.5¢ 11.57
700 8.10 37.0 5.71 6.24 27.6 0.86 .77 .99 0.00 0.00 36.76 4.0 6.84 7. 4.1, .17
801 7.98 37.9 7.59 6.64 27.7: 0.30 .76 .53 0.00 0.00 .80 1 7. 6.4 4.4 .76
901 7.33 37.3 7.86 6.88 28.2. 0.57 .67 .27 0. 0. .03 4 7. 7. .5 .47
1001 7.45 38.7 6.73 7.07 27.9: 9.80 .00 .58 0. 0. .74 7 7. 7. .71 .57
Average 7.20 37.6¢ 36.63 36.18 27.69 30.27 .59 .73 0.4 0.4 78 .05 7. 6.95 .2 .72
StDev 0.60 0.6 0.92 0.88 0.68 0.62 .62 .33 0. 0. .52 21 0. 0.86 .52 62
(b) Random Walk Strategy
Walks| DT DT2 HV HvV2 KNN | KNN2 LR LR2 N8B | NB2 | Stack Stack3 sV sv2 SsvM2 SVMm2
[ 100 35.75 34.55 36.45 36.35 4.1 .8 .05 .95 .5 .00 37.90 .65 40.95 34.85 .80 9.35
200|  33.85| 35.33 38.55 38.00 .4 4! .40 .25 4 .05 39.83 .05 39.50 37.75 .28 7.7
00 .30 35.53 39.65 7.62 .4 .7 .72 .88 . .07 8.1 .53 7.40 38.40 .10 .1
4 .81 34.65 8.75 8.59 .4 .08 .05 7.5 .65 7.7 6.83 .09 .1
.58 34.27 8.55 7.81 .5 8 .69 7.7 96 40.3 9.07 .49 .0:
.65 35.09 7.97 7.58 - 8 .78 B B 5 8. .05 8.9 7.91 .07 .9
35.34 36.13 4 .6 .19 .05 B 8 i 7. 32.0 39.5. 8.07 .42 .3
8 .49 36.13 .23 .74 .50 .4 7 33.3! 8.7 8.47 .61 .28
9 .97 34.49 -39 3 .63 .81 8 33.4¢ 7.9 7.56 71
100 .78 35.69 0 .50 .7 K - 8.21| 32.9! 7.6 7.85 37
Average 14.65 35.19 .43 g .26 12.48 25.7: 26. .15 .. 38.15 32.3 8.8 7.67 .49
StDev| .58 0.68 .88 B .43 .56 0.69 0.: .23 B 0.63 0.82 1.23 1.16 .46
(c) Directed Walk Strategy
Walks| DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svm2 SsVm2
4400 .62 03 9 73 .78 .63 .8 .87 R .64 .27 4.80 46
8800 .56 .08 O .69 .57 .65 .8 .85 B .58 .97 4.94 .85 |
3200 5 .03 1 68 3.60| 55 7 -85 . .54 16 4.93 52
7600 B .10 -9 .65 .55 .55 . .87 3 .56 .07 X 4.99 7
2000 .02 .03 X .62 .46 .52 . .87 8 .59 8 8 .00 .6
6400 .98 .9 .86 .65 .53 .56 . .88 8 .55 8 8 -89 .5
0800 .52 .52 .07 .0 .68 .68 .52 .55 5 .88 3 ! B X 4.8 .68
35200 55 .55 .02 .9 .67 .64 .55 .56 .7 .88 3 ! 8 .93 4.8 .69
39600 .54 .06 .0 .7 .66 .56 .54 .7 .86 K g .1 .99 4.8 .63
44000 .55 .95 .0 .7/ .62 .58 .50 .8 .86 K ! .0 .02 4.7 72
Average .55 ! 03 02 .7 .66 .57 .56 .80 .87 .03 .. .11 .01 4.89 .64
StDev .03 . .05 .09 .14 .03 .08 .05 .01 .01 .07 . .08 .08 .08 .12

B.4. Data of The Case Study on Bank Churner Prediction

Table 22, 23, 24 and 25 give the average numbers of runs, mutants, cost and capability of
testing the bank churners prediction models using three strategies.
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Table 22: Average Number of Runs

(a) Random Target Strategy

Walks| DT DT2 [Hv THv2 KNN KNN2 R LR2 TNg INB2 Stack Stack3 sV sv2 SVM2 SVM2
100 895.20| 997.80° 727.50| 686.70 688.30 668.70° 586.50 651.10] 1028.10 1054.00 866.10| 982.00 711.30| 779.40 197.00 197.80
200 1835.70 1932.90 1419.30 1363.80 1477.30 1386.70 1164.70 1204.10 2069.00 2094.90 1734.10 2132.40| 1460.80 1424.80 391.00° 392.50
300 272230 2696.30 2091.40 2138.10 2018.90 1999.80 1820.90 1780.80| 3065.80 3158.90, 2686.00) 3151.90| 2151.50| 2205.60 581.60 585.20
400| 3508.30, 3793.60 2843.30, 2751.80 2691.80 2682.50 2478.90 2401.80| 4161.80 4187.00 3406.20 4117.90 2873.90 2799.80 769.10] 769.30
500| 4421.80 4703.70 3567.60 3472.00 3511.70 3258.20 2933.50 3092.00 5262.00 5313.90 421110, 5125.80| 3677.70| 3599.00 954.80° 953.70
600 5287.00 5665.00 4154.50 4108.90 4034.70 4057.10 3605.50 3572.20| 6211.00 6199.40 5154.20, 6296.30| 4301.20| 4380.80 1127.20 1129.20
700 5990.10 6660.50 4944.80 4815.30 4766.70 4513.60 4164.90 4089.40| 7316.40 7355.50 5876.80) 7160.10| 4899.10 4886.30 1306.80 1308.40
800/ 6890.10 7517.80; 5548.60| 5543.40 5433.80 5216.80; 4611.90 477410 8171.90 8377.10, 6709.20| 8239.90| 5698.00| 5752.70 1478.70 1477.20
900| 7779.70 8498.10 6364.00) 6171.30 6208.10 5968.20 5261.00 5270.50| 9311.90 9354.00, 7649.30, 9400.80| 6526.10) 6283.40 1651.20 1646.80
1000| 8695.70, 9296.90 7119.50 7016.80 6710.50 6532.30 5854.30 5723.70| 10499.50' 10410.30] 8277.00 10325.20 7091.50 7279.40 1813.10 1818.30
Total| 48025.90 51762.60 38780.50|  38068.10| 37541.80 36283.90 32482.10| 32559.70|  57097.40 57505.00 46570.00 56932.30| 3939110 39391.20| 10270.50|  10278.40
(b) Random Walk Strategy
Walks| DT D12 Thv Hv2 KNN KNN2 LR LR2 Tne NB2 Stack Stack3 SV sv2 SVM2 SVM2
100 1969.20 1994.70 1925.50| 1658.20 2098.00, 2140.50 1622.10 1616.50 2015.80, 2008.70| 1797.90 1923.40 1943.10 1936.90 2099.60 2099.30
200| 391450 3974.90 3900.70| 3259.70, 4283.00 4277.10 3244.00 3252.80| 4001.60 4017.30| 3693.90 3769.20 3905.40 3880.30, 4199.00 4197.80
300] 5934.30 5949.50 5823.40] 4900.70, 6356.00 6406.90 4821.60 4785.80| 5997.70 6023.20| 5548.70 5643.20 5820.30 5826.00 6296.40 6294.80
400| 7894.30 7930.50 7740.70| 6551.00 8495.20 8502.70 6472.00| 6424.00| 8036.30. 8005.30| 7403.20 7524.50 7823.60 7771.10] 8391.50. 8390.80
500 9841.20 9913.10, 9689.10| 8075.40, 10652.80] 10681.90 8254.70| 7989.30| 10029.20] 10058.90 9238.00 9467.70 9741.30 9693.10) 10486.80° 10486.50
600| 11815.20 11878.70] 11642.20 9718.50, 12767.40] 12771.50 9744.50 9617.70| 12043.70] 12053.60 11137.60 11418.20° 11626.20' 11692.00] 12582.50' 12582.00
700] 13741.60 13882.80] 13538.00] 11182.50] 14818.30] 14846.60 11350.00] 11094.10| 14068.90 14014.10] 12960.10 13243.30' 13659.80 13621.60| 14675.70' 14673.30
800| 15708.20 15909.90 15507.10f  12863.10|  17030.70! 16980.80 1292340 12829.60[  16020.10. 16015.70 14746.60 15120.10 15522.30 15525.10 16768.00 16768.50
900| 17721.60 17838.00 17468.70 14567.00| 19055.40| 19099.20 14514.50| 14419.00| 17990.60 17992.60 16496.50 17007.90' 17528.80 17440.80 18856.80' 18860.80
1000| 19676.50 19797.40] 19326.80 16264.40] 21278.00] 21245.20 16111.90] 16085.10 20041.90 19946.10 18425.80 18876.00° 19477.50 19346.50| 20953.10' 20948.70
Total| 108216.60| 109069.50 106562.20 89040.50| 116834.80| 116952.40 89058.70) 88113.90 110245.80; 110135.50| 10144830 103993.50| 107048.30| 106733.40| 115309.40| 115302.50
(c) Directed Walk Strategy
Walks| oT D12 HV Hv2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 sVm2 SVm2
100 45533.00 33281.90| 46260.70° 40482.30] 30873.50 30464.00° 40539.30 39628.40 34075.40| 34713.90 33218.50] 36020.30| 46681.40| 46409.20 27130.70] 27140.30]
200 90443.10| 66892.60| 92970.00° 80419.50| 61837.30 60699.20° 81543.20 80053.80 68336.30| 68956.30' 66090.30 71690.20| 93444.90| 92575.20 54261.60| 54276.90]
300] 136396.70] 99776.30| 138250.70| 120794.90 91519.10 90902.10' 121457.20| 119073.30| 103065.60| 102658.10 99118.80| 108565.30| 138381.40) 139746.50 81405.90| 81410.80]
400[ 182163.10] 133322.70 184613.90| 160438.60| 121986.90| 121446.30, 162170.60| 159424.50| 136056.60 136121.50 133408.00| 14622210/ 185933.50| 185744.70 108549.40| 108541.60
El 227639.3( 167126.5( 131474.3 200818.8 153437.. 1511703 202893.4( 19842981 17109220 1716525 165115.4¢ 180043.5( 232576.4( 232531, 135691.2 135673.9(
6 272995.8( 200753.3( 78466.60| 240591.70| 183611. 181575.7 243873.90| 239218.50| 204861.5 204551.7 198819.9 217750.5¢ 279048.4¢ 277973, 162824.70| 162806.5(
ll 318212.1 234032.2 23814.2 282588.4( 213838, 212570.2¢ 28381621 279466 41 240129.7( 239166.6 2319933 253403.5 325196.4 324527, 189957.1 189940.2(
8 364581.4( 266452.7( 69797.2 320994.0( 243819. 2422293 325008.61 318473.1 273723.7 273669.0( 263889.5 289711.2 372072.8( 371496. 217100.1 217080.5
900[ 411209.80] 301574.90| 415192.90| 361654.80| 275255.40[ 272054.70 365565.30] 359803.10| 307049.20  309023.30 297083, ﬁl 324906.20| 418684.20 418855.20 244226.00| 244238.20,
1000| 455125.20 335926.70| 463754.30| 401752.80| 304058.80| 301949.50 406058.80| 398759.30| 343489.50| 342359.40 330219 lDl 363055.60| 465136.30( 465567.50 271337.70| 271375.30,
Total[ 2504299.50| 1839139.80| 2544594.80| 2210535.80| 1680237.90| 1665061.30| 2232926.50| 2192330.20| 1881879.70| 1882872.30| 1818956.50| 1991368.40| 2557155.70( 2555426.60| 1492484.40| 1492484.20

Table 23: Average Number of Mutants

(a) Random Target Strategy

Walks DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svm2 svm2
100 71.10 79.70 53.50 47.30 50.80 49.30 29.00 34.70 75.20 77.90 65.10 77.80 52.20 58.00 0.00 0.00
200 145.40 152.80 101.30 94.50 111.70 102.30 60.60 65.90 152.90 152.50 130.90 172.10 107.80 103.00 0.00 0.00
300 215.40 211.40 151.60 151.80 148.80 147.10 93.90 93.80 224.00 234.50 205.10 255.10 158.50 160.20 0.00 0.00
400 277.40 302.30 207.40 193.50 199.90 198.90 134.20 128.30 310.30 310.90 257.50 331.00 210.50 201.00 0.00 0.00
500 349.90 372.50 258.90 250.40 262.30 240.00 158.60 167.00 386.80 392.50 317.70 409.80 271.40 263.00 0.00 0.00
600 419.80 452.50 299.80 297.10 299.70 304.80 195.90 190.70 457.60 459.20 391.30 508.70 320.00 321.60 0.00 0.00
700 472.50 535.20 360.70 347.90 358.70 332.00 223.70 217.40 542.90 546.00 445.10 578.80 364.10 356.10 0.00 0.00
800 546.50 601.80 402.50 400.50 408.10 388.40 244.70 257.80 609.20 625.90 512.90 669.30 426.20 426.20 0.00 0.00
900 620.20 682.10 470.00 446.80 470.40 448.20 292.70 286.50 695.00 702.10 586.50 761.30 489.20 460.70 0.00 0.00

1000 697.90 744.80 531.10 511.70 506.30 490.10 317.50 310.70 785.10 768.10 633.70 839.80 534.10 544.00 0.00 0.00
Total| 3816.10| 4135.10( 2836.80| 2741.50| 2816.70| 2701.10( 1750.80| 1752.80| 4239.00| 4269.60| 3545.80( 4603.70| 2934.00| 2893.80 0.00 0.00
(b) Random Walk Strategy

Walks| DT DT2 HV HvV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 SsVm2 svm2
100 158.10 64.40 190.20 198.60 127.30 91.60 197.50 198.20 61.60 67.40 150.00 144.60 174.40 175.10 0.00 0.00
200 314.10 132.70 384.30 397.10 257.40 189.70 396.90 396.50 137.40 131.80 287.80 292.60 351.30 347.90 0.00 0.00
300 464.70 206.20 572.00 596.50 388.80 289.90 592.90 593.00 204.70 213.90 442.10 442.90 525.10 525.30 0.00 0.00
400 626.90 262.20 765.10 796.10 507.40 388.60 792.60 792.00 259.00 282.80 577.70 574.40 696.40 703.00 0.00 0.00
500 785.30 333.30 954.60 993.00 646.50 472.20 991.70 988.90 323.80 350.60 727.40 738.00 871.80 878.40 0.00 0.00
600 950.20 400.90| 1149.80| 1193.90 775.70 587.20| 1188.90| 1187.20 394.80 398.20 870.40 868.10| 1045.90| 1047.40 0.00 0.00
700| 1107.50 475.90( 1343.80| 1392.90 898.40 667.90| 1386.70| 1387.20 474.60 478.40| 1018.60( 1014.00| 1221.00| 1235.00 0.00 0.00
800| 1268.90 533.30f 1533.40| 1593.40| 1048.00 756.40| 1583.10| 1584.70 530.60 546.30| 1172.20| 1170.40| 1387.00| 1404.80 0.00 0.00
900| 1425.60 606.90| 1719.60| 1790.50| 1165.10 836.70| 1783.80| 1784.00 604.60 621.90| 1321.10| 1299.10| 1562.70| 1579.30 0.00 0.00
1000| 1569.50 668.10( 1913.90| 1988.30| 1293.80 947.90| 1981.20| 1983.20 664.10 697.50| 1469.50| 1447.90| 1734.50| 1748.20 0.00 0.00
Total| 8670.80| 3683.90| 10526.70| 10940.30( 7108.40| 5228.10( 10895.30| 10894.90| 3655.20( 3788.80| 8036.80| 7992.00| 9570.10| 9644.40 0.00 0.00

(c) Directed Walk Strategy

Walks| bT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svMm2 SVM2
100 2939.90 1570.30 3255.80 2331.90 977.10 902.30 2804.40 2720.00 1700.80 1749.60 2011.80 1947.80 3289.10 3339.40 0.00 0.00
200 5824.70 3158.20 6527.40 4578.00 1960.90 1716.50 5584.00 5477.70 3463.50 3453.80 3983.80 3791.70 6566.50 6586.50 0.00 0.00
300 8797.80 4692.60 9676.40 6856.30| 2731.60 2508.00 8302.60 8176.70 5185.10 5046.70 5963.60 5847.20 9685.00 9922.90 0.00 0.00
400 11798.20 6300.30| 12991.30 9082.80| 3566.00 3446.20 11113.20{ 10945.40 6775.60 6686.50 8177.90 8066.40| 13077.80| 13191.50 0.00 0.00
500 14703.60 7841.30| 16277.40| 11346.00| 4653.00 4197.50 13878.90 13583.20 8565.10 8534.90 9895.00 9764.50| 16351.90| 16482.40 0.00 0.00
600 17647.00 9501.20| 19610.60| 13549.00| 5537.40 5106.40 16728.30| 16342.40| 10342.70| 10068.70| 12051.00| 11921.80| 19625.50| 19724.20 0.00 0.00
700 20490.00| 11086.00| 22739.00| 16020.20| 6540.70 6070.20 19581.70{ 19238.40| 12109.60| 11807.70| 14146.00| 13860.10| 22923.20| 22979.30 0.00 0.00
800 23618.40| 12566.70| 26038.40| 18144.70| 7057.30 6749.10 22346.90| 21909.20| 13721.50| 13508.50| 15932.30| 15798.60| 26136.90| 26311.80 0.00 0.00
900 26665.00| 14360.90| 29211.00| 20458.50| 8291.20 7499.90 25117.50| 24636.10| 15397.10| 15465.40| 17975.80| 17652.60| 29437.30| 29811.60 0.00 0.00
1000 29481.30| 16068.40| 32643.60| 22869.50| 8782.50 8328.10 27879.10| 27372.90| 17388.90| 16941.90| 19946.90| 19936.90| 32693.00| 32980.80 0.00 0.00
Total| 161965.90| 87145.90| 178970.90| 125236.90| 50097.70| 46524.20| 153336.60| 150402.00| 94649.90| 93263.70| 110084.10| 108587.60| 179786.20| 181330.40 0.00 0.00
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Table 24: Average Cost

(a) Random Target Strategy

Walks| DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svm2
100 12.59 12.52 13.60 14.52 13.55 13.5 0.22 18.76 13.67 13.53 13. 12.62 13.63 13.44[ #DIV/(
200 12.63 12.65 14.01 14.43 13.23 13.51 .22 18.27 13.53 13.74 13.25 12.39 13.55 13.83[ #DIV/C
300 12.64 12.75 13.80 14.08 13.57 13.5 .39 18.99 13.69 13.47 13.10 12.36 13.57 13.77| HDIV/(
400 12.65 12.55 13.71 14.22 13.47 13.4: 47 18.72 13.41 13.47 13.23 1 4 13.65 13.93| #DIV/(
500 12.64 12.63 13.78 13.87 13.39 13.5: 18.50 18.51 13.60 13.54 13.25 12.51 13.55 13.68[ #DIV/(
601 12.59 12.52 13.86 13.83 13.4 13.31 18.40 18.7: 13.57 13.50 13.17 12.38 13.44 13.62[ #DIV/(
700 12.68 12.44 71 .84 13.2: 13.60 18.62 18.. 13.48 13.47 13.20 12.37 13.46 13.72| H#DIV/(
801 12.61 12.49 13.79 13.84 13.3 13.43 18.85 18. 13.41 13.38 13.08 12.31 13.37 13.50| #DIV/(
90 12.54 12.46 13.54 13.81 13.2¢ 13.32 17.97 18.4 13.40 13.32 13.04 12.35 13.34 13.64[ #DIV/C
100 12.46 12.48 13.41 13.71 13.25 13.33 18.44 18.4 13.37 13.55 13.06 12.29 13.28 13.38| #DIV/
Average 12.60 12.55 13.72 14.02 13.37 13.48 18.81 18.61 13.51 13.50 13.17 12.40 13.48 13.65( #DIV/0!
StDev. 0.06 0.10 0.17 0.28 0.13 0.12 0.65 0.22 0.12 0.11 0.09 0.10 0.13 0.17| #DIV/O!
(b) Random Walk Strategy
Walks| DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3
100 12.46 30.97 10.12 .3 16.48 23.37 21 .16 2.72 29.80 11.99 13.30
200 12.46 29.95 10.15 .2 16.64 22.55 17 .20 9.12 30.48 12.83 12.88
300 12.77 28.85 10.18 .2 16.35 22.10 .13 .07 9.30 28.16 12.55 12.74
40! 12.59 30.25 10.12 3 16.74 21.88 .17 11 1.03 28.31 12.81 13.10
50¢ 12.53 29.74 10.15 NE 16.48 22.62 .32 .08 0.97 28.69 12.70 12.83
601 12.43 29.63 10.13 .14 16.4 21.7! .20 30.5: 30.27 12.81 1
70 12.41 29.17 10.07 .03 16.4 22 .18 29.6: 29.2! 12.7: 13.(
80 12.38 29.83 10.11 .07 16.2. 22. .16 30.1 29.3: 12.5: 12
90! 12.43 29.39 10.16 .14 16.31 22. .14 29.7 28.9: 12.4: 13.
100 12.54 29.63 10.10 .18 16.45 22.. .13 .. 30.1: 28.61 12.54 13.04
Average 12.50 29.74 10.13 8.17 16.47 22.42 8.18 8.10 30.34 29.18 12.60 13.01
StDev 0.12 0.59 0.03 0.09 0.14 0.47 0.06 0.05 1.06 0.80 0.25 0.17
(c) Directed Walk Strategy
Walks|DT DT2 HV HvV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 SVM2 SVM2
100 15.49 21.19 14.21 17.36 31.60 33.76 14.46 14.57 20.03 19.84 16.51 18.49 14.19 13.90| #DIV/0! #DIV/0!
200 15.53 21.18 14.24 17.57 31.54 35.36 14.60 14.61 19.73 19.97 16.59 18.91 14.23 14.06| #DIV/0! #DIV/0!
300 15.50 21.26 14.29 17.62 33.50 36.24 14.63 14.56 19.88 20.34 16.62 18.57 14.29 14.08| #DIV/0! #DIV/0!
400 15.44 21.16 14.21 17.66 34.21 35.24 14.59 14.57 20.08 20.36 16.31 18.13 14.22 14.08| #DIV/0! #DIV/0!
500 15.48 21.31 14.22 17.70 32.98 36.01 14.62 14.61 19.98 20.11 16.69 18.44 14.22 14.11| #DIV/0! #DIV/0!
600 15.47 21.13 14.20 17.76 33.16 35.56 14.58 14.64 19.81 20.32 16.50 18.26 14.22 14.09| #DIV/0! #DIV/0!
700 15.53 21.11 14.24 17.64 32.69 35.02 14.49 14.53 19.83 20.26 16.40 18.28 14.19 14.12| #DIV/0! #DIV/0!
800 44 .20 34.55 35.89 4.54 4.54 .95 20. .56 .34 .24 12| #D| #DIV/0!
900 42 .00 33.20 36.27 4.55 14.60 .94 19.! .53 .41 .05| #DI #DIV/0!
1000 .44 .91 34.62 36.26 4.56 4.57 19.75 20. .55 .21 12| #DI #DIV/0!
Average .47 .15 33.20 35.56 4.56 4.58 .90 20.: .53 .40 .07 | #DIV/0O! HDIV/(
StDev .04 .12 1.09 0.78 .05 04 .12 0.: .11 .22 .07| #DIV/O! | #DIV/O!
Table 25: Average Capability
(a) Random Target Strategy
Walks| DT DT2 HV H KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 SVM2 SVM2
100 35.55 39.. 6.75 5.4 4.6 14.50 17.35 7.60 38.9! 2.5! 38.90 26.10 9.00 .00
200 36.35 38.. 3 7. 5. 15.15 16.48 8.23 38.1: 2.7 43.03 26.95 75 .00
300 35.90 35.. 7 B 4. 4. 15.65 15.63 7.33 39.0: 4.1 42.52 26.42 .70 .00
400 _3a.68] 37 4. a. a. 16.7 T6.04 7 38.8 2.49] 4138 2631 13 X 00
500 34.9 7.2 R 5. 6. 4. 15. 16.70 6 39.2! 1.7 40.98 27.14 .30 .0 .00
600 34.9: 7.7 4. 4.76 4. 5.4 .89 .1 38.27 .6 42.39 .67 26.80 .0 .00
700 33.7 8. 3 4.85 5. 3.7 53 .7 39.00 .7 41.34 .01 25.44 .0 .00
800 34.1 7. .1 5.03 5. 4.2 .11 .0 39.12 .01 41.83 .64 26.64 .0 .00
900 34.4¢ 7. 1 4.82 6. 4.9 .92 6 39.01 5 42.29 8 25.59 .0 .00
1000 34.9 7.24 26.56 25.59 25.3. 24.5: 15.8: 15.54 .26 38.41 1.6 41.99 26.71 27.20 .0 .00
Average 34.97 37.70 25.77 24.68 25.69 24.64 15.77 16.12 38.35 38.81 32.41 41.66 26.61 26.45 0.00 0.00
StDev| 0.79 1.14 0.59 0.66 0.92 0.58 0.65 0.58 0.59 0.39 0.73 1.15 0.41 1.12 0.00 0.00
(b) Random Walk Strategy
Wal DT DT2 HV HV2 KNN KNN2 R LR2 NB NB2 Stack Stack3 sV sv2 SVM2 SsVvMm2
10 79.0! 2.20 95.10 3 3.65 45.8! 7 10 0. 33.70 75.00 72.30 7.2 7.55 00 0.
20 78.5: 3.18 96.08 22! 4.35 47.4 .13 4. 32.95 71.95 73.15 7.8: 6.98 .00 0.
300 77.4! 4.37 95.33 .4 4.80 48. .83 4. 35.65 73.68 73.82 7.5, 7.55 .00 0.
40 78.31 2.7 95.64 5. 3.43 48, 2 5.35 72.21 71.80 7.0:! 7.88 00 0.
501 78.5: 3.3: 95.46 .30 4.65 47. .17 5.06 72.74 73.80 7.1 7.84 .00 0.
601 79.1: 33.4 95.82 .4 4.64 48. .08 3.18 72.53 72.34 7.1 7.28 .00 0.
700 79.1. 33.9: 95.99 4 4.17 47 05 4.17 72.76 72.43 7.2 8.21 00 0.
80! 79.3: 33.33 95.84 .5 5.5/ 47.2: .94 .04 1 4.14 73.26 73.15 6.69 7.80 .00 0.
901 79.21 33.72 95.53 4 4.7 46.4: .10 .1 33.59 4.55 .39 72.17 6.82 7.74 .0 0.
100 78.4: 33.41 95.70 42 4.6 47 .41 6 1 33.21 4.88 73.48 72.40 6.73 7.41 0 0.
Average 78.7: 33.37 95.65 .43 4.4 47.5; .03 .0: 33.08 4.36 73.10 72.74 7.14 7.62 .0 0./
StDev .5° 0.60 0.30 .11 0.60 0.9 .15 .1 1.05 0.90 .87 0.70 0.35 0.35 .0/ 0.00
(c) Directed Walk Strategy
Walks| DT DT2 HV HV2 KNN KNN2 LR LR2 NB NB2 Stack Stack3 sV sv2 svm2 svm2
3800 38.68 20.66 42.84 30.68 12.86 11.87 36.90 35.79 22.38 23.02 26.47 25.63 43.28 43.94 0.00 0.00
7600 38.32 20.78 42.94 30.12 12.90 11.29 36.74 36.04 22.79 22.72 26.21 24.95 43.20 43.33 0.00 0.00
114 .59 20.58 42.44 30.07 11.98 11.00 .41 35.86 22.74 22.1 26.16 25.65 42.48 43.52 .00 0.00
152 .81 20.72 42.73 29.88 11.73 11.34 .56 36.00 22.29 22.0 26.90 26.53 43.02 43.39 .00 0.00
190 .69 20.64 42.84 29.86 12.24 11.05 .52 35.75 22.54 22.4 26.04 25.70 43.03 43.37 .00 0.
228 .70 20.84 43.01 29.71 12.14 11.20 .68 35.84 22.68 22.0: 26.43 26.14 43.04 43.25 .00 0.
266! .52 20.84 42.74 30.11 12.29 11.41 .81 36.16 22.76 22.1 26.59 26.05 43.09 43.19 .00 0.
3041 .85 20.67 42.83 29.84 11.61 11.10 .75 36.03 22.57 22.2. 26.20 25.98 42.99 43.28 .00 0.
34200 38.98 21.00 42.7 29.91 12.12 10.96 36.72 36.02 22.51 22.61 26.28 25.81 43.04 43.5: .00 0.00
38000 38.79 21.14 42.9! 30.09 11.56 10.96 36.68 36.02 22.88 22.29 26.23 43.02 43.41 0 0.00
Average 38.69 20.79 42.8! 30.03 12.14 11.22 36.68 35.95 22.61 22.37 25.87 43.02 43.4; .00 0.00
StDev| .19 0.17 0.1 .27 0.46 0.28 .14 0.13 0.19 0.33 0.25 0.43 .21 .2 .00 0.00
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