
Pattern-based Approach to Modelling and Verifying System Security

Xiaoyu Zheng, Dongmei Liu
School of Computer Science and Engineering
Nanjing University of Science and Technology

Nanjing, 210094, P.R. China
zxy961120@sina.com, dmliukz@njust.edu.cn

Hong Zhu, Ian Bayley
School of Engineering, Computing and Mathematics

Oxford Brookes University
Oxford OX33 1HX, UK

hzhu@brookes.ac.uk, ibayley@brookes.ac.uk

Abstract—Security is one of the most important problems in
the engineering of online service-oriented systems. The current
best practice in security design is a pattern-oriented approach.
A large number of security design patterns have been identified,
categorised and documented in the literature. The design of
a security solution for a system starts with identification of
security requirements and selection of appropriate security
design patterns; these are then composed together. It is crucial
to verify that the composition of security design patterns is
valid in the sense that it preserves the features, semantics and
soundness of the patterns and correct in the sense that the
security requirements are met by the design. This paper pro-
poses a methodology that employs the algebraic specification
language SOFIA to specify security design patterns and their
compositions. The specifications are then translated into the
Alloy formalism and their validity and correctness are verified
using the Alloy model checker. A tool that translates SOFIA
into Alloy is presented. A case study with the method and the
tool is also reported.

Keywords-Security; Design patterns; Algebraic specifica-
tions; Formal verification; Model checking

I. INTRODUCTION

The use of security patterns to solve system security
design problems is the current best practice for security engi-
neering [1], [2]. In this approach, well recognised solutions
to various security concerns are documented as a collection
of security patterns. A large number of security patterns have
been recognised and documented in the past few decades;
see e.g. [3], [4]. The overall security solution for a system
can then be formed by composing security patterns that each
address one of the security concerns [5]. However, errors
may occur in selecting an inadequate solution to a specific
security concern or in composing patterns together inappro-
priately, etc. A question that remains open is how to validate
and verify that a given composition of security patterns is
valid and really meets the overall security requirements of
the system. To address the question, this paper proposes a
formal approach based on algebraic specification.

The rest of this paper is organised as follows. Section II
briefly reviews the related work. Section III outlines our
proposed approach. Section IV is devoted to the formal
modelling of security patterns and their compositions in the
algebraic specification language SOFIA. Section V focuses

on the automatic verification of security solutions specified
in SOFIA using our prototype tool A2A. Section VI reports
a case study with the security design of a blockchain-based
crowd funding service application. Section VII concludes
the paper with a discussion of future work.

II. RELATED WORK

In this section, we briefly review related work in three
areas: the formal verification of security solutions, software
design patterns and algebraic specification techniques.

A. Verification of Security Patterns

Currently, security design patterns are commonly docu-
mented and specified in UML [6], [7]. UML is a semi-
formal modelling language. It is widely used in software
development and is the de facto standard for model-driven
software engineering. Design patterns are easy to understand
when described in UML, but due to its semi-formal nature,
it is not precise enough for formal verification of the correct-
ness of the patterns, nor their compositions and applications.
Recently, formal methods have been employed to verify the
correctness of a composition of security design patterns, for
example, by employing model checking techniques [8]–[12].

To enable the formal verification of security patterns and
their compositions and applications, two approaches have
been advanced in the literature: extending the UML language
definitions with formal semantics, and transforming UML
diagrams into formal specifications. The formal models are
then verified by employing model checking techniques. The
following are among the most well-known in the literature:
• modelling security patterns through UMLSec [13] and

using a model checker to check whether a security de-
sign specified in UMLSec meets the secrecy, integrity,
authenticity and refinement conditions [14].

• transforming UML sequence diagrams to CCS as the
specification of pattern composition and using model
checker CWB-NC to check various properties specified
by GCTL [8].

• transforming UML models of security patterns to Alloy
[15] and using the Alloy Analyzer to check the incon-

1

sistencies and ambiguities within security patterns [10].
Five security patterns were studied.

• using High Level Petri-nets [16] and Colored Petri-nets
[17] to model security patterns and to combine security
patterns with existing models [11], [12].

The above works either focus on the individual security
patterns or treat the composition of security patterns as a
whole system. The information on how patterns are com-
posed is omitted in the verification process. Consequently,
although the consistency of the formally specified system
can be verified, the validity of the use of a pattern in the
system cannot be proved. Moreover, it is difficult to locate
the faults in large and complex systems that consist of
many patterns, if the verification process detects an error.
Secondly, a UML model defines a design of the system
without specifying the system’s requirements. Therefore,
the correctness of the design in terms of whether it meets
the security requirements cannot be proved. Finally, model
checking techniques verify the security properties of models,
but not the correct implementation of models.

B. Software design patterns and pattern compositions

In a wider context, software design patterns have been
an active research topic in recent decades. In addition
to object-oriented design patterns [18], a wide range of
software design patterns, including security design patterns,
have been recognised, categorised and documented. Various
approaches to improve the preciseness of pattern definitions
have been proposed. These include formalisation of UML,
development of modelling languages specifically for the
definition of design patterns, and employment of formal
logic and specification languages [19], [20]. However, as far
as we know, there is no serious attempt to employ algebraic
specifications in the same manner as this paper.

The composition of design patterns has also been studied
by a number of authors. In [21], an algebra for pattern
composition was proposed with a set of six operators on
patterns for the composition and instantiation of design
patterns. A complete set of algebraic laws for these operators
were proved. They are useful for reasoning about pattern
compositions and instantiations in pattern-oriented design of
object-oriented systems as demonstrated in case studies [21].

The validity of pattern compositions was studied in [22],
where the validity of a pattern composition was defined as its
preservation of the features, semantics and soundness of the
composed patterns. The conditions for a pattern composition
to be valid were proved for various pattern operators. These
lay a solid foundation for the work reported in this paper.

C. Algebraic specification

Algebraic specification is a formal method that supports
specification refinement, verification and software testing. It
has been widely used in the formal development of object-
oriented software, software components and Web services

[23]–[25]. Our empirical studies [26]–[28] demonstrated that
algebraic specifications are easy to learn and to understand.
They are suitable for the specification of large scale systems
due to their modular structure. It enables patterns to be
specified in a reusable and composable way. In particular,
in [29], we proposed an approach to specify and verify
service compositions in the so-called dual structure 〈SA, SI〉
of algebraic specifications, where SA is the abstract speci-
fication that defines the requirements of composed services
and SI is the implementation specification that defines how
the service is composed from other services. The implemen-
tation relationship that must be satisfied between SA and
SI can be formally verified to ensure the correctness of
the implementation of services through service composition.
In this paper, we apply this dual structure to specify the
compositions of security patterns.

Another attractive feature of algebraic specifications is
that they can be used directly in automated software testing
[23], including test case generation, test execution and test
oracles. Thus, they can be employed to perform security
testing to check if the implementation of a security solution
is correct with respect to a formal model.

III. THE PROPOSED APPROACH

This section outlines the proposed method for pattern-
based security design. As shown in Figure 1, the process
consists of two threads of tasks: modelling and verification.

Figure 1. The Process

1) Modeling activities aim to construct a formal model of
the security solution as an algebraic specification. It spec-
ifies the security solution in the dual structure of abstract
+ implementation specifications. The abstract specification
defines the system’s security requirements, while the imple-
mentation specification describes how security patterns are
composed together. It also instantiates the security patterns
to form specifications of basic components in the security
solution; these are called modules in the sequel.

2) Verification activities transform the algebraic specifica-
tions into a set of correctness conditions to be verified. Two
sets of correctness conditions are derived from the specifi-
cations: (a) validity conditions require that the composition
of patterns preserves the features, semantics and soundness
of the patterns used in the security solution; (b) functional
correctness conditions require that the composition of the
patterns as specified in the implementation specification

2

meets the security requirements as specified in the abstract
specification.

IV. SPECIFYING SECURITY PATTERNS AND
COMPOSITIONS

This section discusses how to specify security patterns and
their compositions in the specification language SOFIA.

A. Specification of Security Patterns

A security pattern consists of a set of components, a set
of operations on the components, a set of properties that
the pattern satisfies (i.e. the security requirements it meets),
and finally some usage information, such as the applicable
platforms of the pattern. We use algebraic specification
language SOFIA to specify security patterns.

In SOFIA [30], an algebraic specification of a computer
system is a triple 〈S,Σ, Ax〉, where S = 〈S,�,�〉, S is a
set of sorts in the system representing the components in
the system or abstract concepts used in the system, � and
� are the extends and uses relations on S. Σ and Ax are the
set of signatures and the set of axioms of the specification,
respectively. They define the syntax and semantics of the
operators respectively. A system specification is decomposed
into a number of modules such that each module specifies
one sort, and contains a set of signatures and axioms
associated to the sort.

Therefore, the specification of a pattern in SOFIA consists
of a number of specification modules. Each component in
the pattern is specified in a module with the component
name as the sort. Each datatype used in the security pattern
is also specified by a module in a similar way. A module
with the name of the pattern specifies the components and
datatypes used in the pattern, and a set of operations that
the pattern provides. The signature defines the syntax of
operations and the relationships between components. The
axioms define the semantics of the operations and their
dynamic properties as well as the security requirements. The
usage information is only used for developers to identify the
pattern and described in natural language.

For example, consider the access control pattern Owner
shown in Figure 3. The components S in the pattern include
(a) the collection of data entities owned by a particular user,
(b) the database that stores all the data owned by different
users. They are specified in module of sort SOData and
DataDB. The datatype of the return value resulting when
access to a piece of data is requested is also specified in a
module, the sort Return. The operation set O includes (a)
owner verifier for verifying the ownership of a specific
collection of data, and (b) updatedata for updating data.
Axiom 1 defines operation owner verifier as follows: the
operation returns true if the current user is the owner of
data. The security requirement “only the owner of data can
access the data” is stated as Axioms 2 and 3. After calling
the data creation operation, the update operation is called to

change the data that have just been created. If two different
users perform the operations, the data cannot be updated;
otherwise they can be updated successfully.

B. Specification of Pattern Compositions

In general, a composition of design patterns consists
of a series of operations on the patterns composed; these
operations include instantiations of patterns, restriction and
extensions of patterns in the context of the application, su-
perposition of patterns together, lifting or flattening patterns
on the variables of the pattern, etc. [21]. Due to the modular
structure of SOFIA specifications, these operators can be
realised simply by manipulating the signatures and axioms
of the specification modules. For the sake of space, this
paper will not detail how exactly to adapt the operations
for SOFIA, instead we will illustrate the process with an
example.

For example, Figure 2 shows the security solution for
the access control system of a blockchain-based application.
It consists of four basic modules in Layer 0 and two
composition modules in Layer 1 and Layer 2, respectively.
Edges with arrows depict the dependency relation between
modules, while edges with diamonds depict the composition
relation between modules.

Modeling
Process

Faults in
composition

Instantiate

Convert

Verify

Composite

Convert

Faults in
instantiation

Structure of
solution Algebraic Spec

of basic modules

Alloy
Spec

Abstract
Spec

Implementation
Spec

Alloy
Spec

Security
pattern library

Verify
Verification

Process

DataAC

DataOp Owner Policy

Composition

Dependency

DataM Layer 2

Layer 1

Layer 0Vote

Algebraic
Specification

Specification
Parser

Algebraic Specification Database

User Interface

Parser Converter

Sort
Parser

Signature &
Operation Set

Axiom
Parser

Fact, Predicate &
Assert Set

Generator

Specification
Generator

Alloy
Specification

EBCF

AccountM

EventM DonateMStopLog AccountRate Basic UtilOp

Log Stop Rate

AccountMAccountMImp

Account

EBCFImp EBCF

DonateMEventM

Figure 2. The Structure of an Access Control System

The specifications of components and abstract data types
used in a security pattern are first instantiated by substituting
the sorts with those of the concrete data types actually used
in the application. Additional attributes may be added into
the specification to link to the context of the application.

For example, consider the Owner pattern used in a
blockchain application to manage medical data. The abstract
data type SOData is instantiated to a sort called Medical-
Case, where the attribute owner in SOData is systematically
replaced by patient id. It is also extended by adding new
attributes visit time and hospital to the module.
Spec SOData; //before instantiating and extension
uses Integer;
Attr
owner: Integer;

End

Spec MedicalCase; //after instantiating and extension
uses Integer, Date, String;
Attr
patient_id:Integer;

3

visit_time:Date;
hospital:String;

End

Replacing one attribute with another causes it to be
systematically replaced in the axioms as well. For example,
//before instantiation:
o.owner_verifier(db,uid,i)=true, if d.owner=uid;

//after instantiation:
o.owner_verifier(db,uid,i)=true, if d.patient_id=uid;

The algebraic specification of a composition module con-
sists of the abstract specification 〈SA,ΣA, AxA〉 and the
implementation specification 〈SI ,ΣI , AxI〉.

The abstract specification specifies the semantics and
behaviour of an operation with a set of axioms that only
contain the operations defined in its signature ΣA.

The implementation specification, in contrast, defines how
the operations of the abstract specifications invoke opera-
tions defined in the components and datatypes. For example,
the following axioms of DataM specify the function and
implementation of the operation updatedata policy, respec-
tively.
//abstract
dac.updatedata_policy(...).content = s,
if dac.access_verifier(...) = true;

//implementation
dac.updatedata_policy(...) = dac.dop.updatedata(...),
if dac.access_verifier(...) = true;

The axiom in the abstract specification states that the
content of the data after the operation is s if the current
user passes the permission check. The axiom in the imple-
mentation specification states that the permission verification
operation access verifier in DataAC is called first, then
the update operation updatedata in DataOp is called if
access verifier returns true.

V. DERIVATION OF VERIFICATION OBLIGATIONS

To verify that a pattern-based security solution is correct,
we identify two types of verification obligations:
• Validity of the pattern composition: For a pattern com-

position to be valid, it must preserve the features of the
patterns composed together, and preserve the semantics
and soundness of the patterns [22]. In the context of the
algebraic specification of security patterns, this means
that the axioms of the modules in the specification of
the patterns are consistent with each other after they
are instantiated and extended.

• Satisfaction of security requirements: A composition of
a set of components is correct if and only if the im-
plementation specification of the composition satisfies
all the properties specified in the abstract specification
of the system [29]. This means that the axioms in
the implementation specification plus the axioms in
the component specifications after instantiation and
extension entail the axioms in the abstract specification.

This section presents the transformation of security design
specifications in SOFIA into verification obligations in the
formalism that can be automatically checked by the model
checking tool Alloy.

A. Transformation of Basic Module

Let 〈S,Σ, Ax〉 be the SOFIA specification of a basic
module, where S = 〈S,�,�〉, Σ = {Σs | s ∈ S}, and
Ax = {Axs | s ∈ S}. It is translated into an Alloy
specification that consists of the following elements:

1) S = 〈S, >〉: the classes S in the module and the
extends relationships > between them.

2) M = {M s|s ∈ S}: the data members in the module,
where M s is the set of data members in the class s.

3) E : the set of enumeration data in the module.
4) F = {F s|s ∈ S}: the constraints on the data

members, where F s is the constraints on the data
members in M s. For each f ∈ F s, f = 〈Vf , pf 〉,
where Vf is the set of variables and pf is a predicate
on those variables.

5) O: the set of operations in the module. Each op ∈ O
has the form op = 〈ϕ, In,Out〉, where ϕ is operation
name, In and Out are the sets of input and output
parameters.

6) P = {Pop|op ∈ O}: the assertions on the operations
in the module, where Pop is the set of assertions on
operation op.

7) A : the behaviour properties of the module. For each
a ∈ A , a = 〈Va, pa〉, where Va is the set of variables,
pa = 〈seq, ea〉 is a predicate that asserts the equation
ea holds after executing the sequence seq of operations
on the system.

The following are the rules to derive Alloy specifications
from SOFIA specifications of basic modules.

Rule 1: S in the Alloy specification contains the set
S of classes that is the same as the sort set S in SOFIA
specification, and the extends relation > the same as � in
SOFIA. There is no explicit definition of the uses relations
in Alloy so the relation � in SOFIA specifications is omitted
in the translation.

Rule 2: For the signature part of each sort Σ s ∈ Σ ,
constants operators (Const) are added to the enumeration
set E , attribute operators (Attr) are translated into the data
members M s ∈ M of signature s, and other operators
(Retr&Tran) are added to operation set O .

Rule 3: For each axiom axattr = 〈V, e〉 defining con-
straints on an attribute attr, axattr is translated into a fact
f = 〈Vf , pf 〉 and added to F , where Vf = V and pf is
derived from the conditional equation e.

Rule 4: For each axiom axop = 〈V, e〉 defining the
properties of an operation, the conditional equation e is
translated into a predicate po ∈ P o, where the variables
in po are the input and output parameters of operation o.

4

Rule 5: For each axiom axseq = 〈V, e〉 defining the
properties of a sequence of operations, axseq is translated
into an assertion a ∈ A, where the variable set V is
translated into aV and conditional equation e is translated
into seq ∧ ae.

These rules are implemented by Algorithm 1. Table I lists
the operations used in the algorithms.

Table I
SYMBOLS USED IN ALGORITHMS

Symbol Description
ax.v The set of variables V in axiom ax
ax.e The conditional equation e in axiom ax∏

op(ax) The operation in axiom ax∏
oplist(ax) The set of operations in axiom ax∏
out(op) The set of output parameters of operation op

Figure 3(a) is an algebraic specification in SOFIA and (b)
is the result of its translation into Alloy specification.

B. Transformation of Composition Module

A composite module in SOFIA is translated into an Alloy
specification that consists of the following elements:

1) O: the set of operations in the module.
2) P = {Po|o ∈ O}: the set of predicates that defines

the implementation of operations in the module, where
Po is the predicate defining the implementation of
operation o.

3) A : the set of assertions on the behaviours of the
operations. It defines the security requirements of the
module. A = Aop ∪ Aseq , where Aop = {A o

op|o ∈
O}. A o

op is the set of assertions defining the external
function of operation o. Aseq is the set of assertions
defining the security requirements.

The following are the rules that extract operations, pred-
icates and assertions from SOFIA specifications of pattern
compositions, and translate them into Alloy.

Rule 1: The signatures ΣA of the abstract specification
are added to the operation set O .

Rule 2: For each axiom axA
op = 〈V, e〉 that defines the

properties of an operation op in the abstract specification,
it is translated into an assertion a = 〈Va, ea〉 and added to
A , where the variable set V is translated into Va and the
conditional equation e is translated into ea.

Rule 3: For each axiom axA
seq = 〈V, e〉 that defines the

properties of a sequence seq of operations in an abstract
specification, it is translated into an assertion a = 〈Va, ea〉
and added into A , where the variable set V is translated
into Va, the conditional equation e is translated into e′ and
ea = 〈seq, e′〉.

Rule 4: The signatures Σ I of the implementation specifi-
cation are added to the operation set O .

Rule 5: For each axiom axI = 〈V, e〉 in the implemen-
tation specification, the conditional equation e of the axiom
is translated into a predicate po and added into Po, where

Algorithm 1 Conversion of Basic Module
Input: The SOFIA specification 〈S,Σ , Ax〉
Output: The Alloy specification 〈S ,M ,E ,F ,O,P,A 〉

//Step 1: Convert each sort and its signatures into Alloy
signature, enumeration or operation according to Rule 1
and 2.
for each s ∈ S do
S ← S + s; R> ← R> + �s; E ← E + Σs

Const;
M s ← Σs

Attr; M ←M + M s;
O ← O + Σs

Retr + Σs
Tran;

end for
S ← 〈S, R>〉;
for each ax ∈ Ax do

//Step 2: Convert each axiom in Axattr into Alloy fact
according to Rule 3.

if ax ∈ Axattr then
V ← ax.v; p← ax.e; F ← F + 〈V, p〉;

end if
//Step 3: Convert each axiom in Axop into an equation

in Alloy predicate according to Rule 4.
if ax ∈ Axop then

op←
∏

op(ax); Pop ←Pop + ax.e;
end if
//Step 4: Convert each axiom in Axseq into an Alloy

assertion according to Rule 5.
if ax ∈ Axseq then

Seq =
∏

oplist(ax); V ← ax.v; e← ax.e;
for each op ∈ Seq do

V ← V ∪
∏

out(op);
end for
A ← A + 〈V, 〈Seq, e〉〉;

end if
end for
//Step 5: Add the Alloy predicates consisting of a collec-
tion of equations to the predicate set P .
for each op ∈ Seq do

P ←P + Pop;
end for
return 〈S ,M ,E ,F ,O,P,A 〉;

the variables in po are the input and output parameters of
operation o.

The above rules are implemented by Algorithm 2.

C. Verification of Pattern Composition

The verification of a security solution consists of two
stages. The first stage verifies that each basic module is con-
sistent. The second stage checks the composition modules
for their validity and correctness.

In Stage 1, for each basic module in the specification,
each operation defined by the predicate is executed first to
check whether the operation’s pre/post conditions contradict
other axioms.

5

(a) Specification in SOFIA (b) Alloy Specification Generated

Figure 3. Example of Translation

Then each assertion is rewritten into a predicate by con-
verting the universally quantified variables of the assertion
into the variables of the predicate; see the example below.

//assert before rewriting
assert assertion {
all v1:type1, v2:type2 | op[v1,v2] => v1=v2

}

//predicate after rewriting
pred predicate [v1:type1, v2:type2] {
op[v1,v2] => v1=v2

}

The predicate is checked to ensure that the operation se-
quence and the security requirements defined in the assertion
are consistent.

Finally each assertion is verified to ensure that the module
meets the security requirements defined in the assertion.

In Stage 2, the composition modules are verified. This
consists of the following three steps.

Step 1: Verifying the preservation of soundness.
Assume that each pattern is sound, i.e. they can all be

satisfied. The soundness of the composition of the patterns
requires that the specification is satisfiable, too. Therefore,
for each operation op, we use Alloy to execute op described
by the predicate P o to generate an instance that satisfies
the predicate. If the instance does not exist, this indicates
that the specification of operation op is not satisfiable.
Thus, the specification does not preserve soundness, and the
specification is faulty.

Step 2: Verifying the preservation of features.

The features of a pattern are specified as axioms in the
specification of the patterns and their components. Veri-
fication of the feature preservation condition of validity
is done by proving that these axioms are also true in
the composition specification. Therefore, we verify each
assertion that defines the behaviours and properties of the
operations. First, the assertion is rewritten into a predicate in
the same way as for the verification of basic modules. The
resulting predicate after rewriting has the same variables,
operations, and constraints as the original assertion. It is
executed in Alloy to generate an instance. If an instance
can be generated from the predicate, it means that the
predicate is consistent with all other axioms. Then the
assertion is verified by generating counterexamples within
the given scope. If there is no counterexample, the assertion
is true within the given scope. In that case, the predicate
P o defining the implementation of operation op satisfies the
axioms in the abstract specification that defines the external
function of operation op as defined by the assertion, thereby
proving that the composition preserves the features.

Step 3: Verifying the functional correctness.

The verification of functional correctness of pattern com-
position in the context of security design involves verifying
each assertion in Aseq that defines the security requirements.
The verification process is similar to Step 2. First, the asser-
tion is rewritten into a predicate to generate instances. If an
instance can be generated, the assertion does not contradict
the axioms. Then, we attempt to generate counterexamples

6

Algorithm 2 Conversion of Composition Module
Input: The SOFIA specification consisting of SI and SA

Output: The Alloy specification 〈O,P,A 〉
//Step 1: Add the signatures of SA and SI to the operation
set O .
O ← ΣA ∪ ΣI ;
//Step 2: Convert each axiom in set AxA into an Alloy
assertion according to Rule 2 and 3.
for each ax ∈ AxA do

seq ←
∏

oplist(ax); V ← ax.v; e← ax.e;
for each o ∈ seq do

V ← V ∪
∏

out(o);
end for
//If the axiom defines an operation o, add it to A o

op;
otherwise, add it to Aseq

if ax ∈ AxA
op then

o← seq [0]; A o
op ← A o

op + 〈V, 〈seq, e〉〉;
else Aseq ← Aseq + 〈V, 〈seq, e〉〉;
end if

end for
//Step 3: Convert each axiom in AxI into an equation in
Alloy predicate according to Rule 5.
for each ax ∈ AxI do

o =
∏

op(ax); po ← po + ax.e;
end for
//Step 4: Add each predicate and assertion on operation o
to the predicate set P and assertion set Aop.
for each o ∈ O do

P ←P + po; Aop ← Aop + A o
op;

end for
A ← Aop + Aseq;
return 〈O,P,A 〉;

to the assertion. If there is no counterexample, the assertion
is true within the given scope and the specification must
meet the security requirements defined in the assertion.

There are several common errors in security design, which
include violating the operation’s pre/post conditions and
errors in the invocations of operations. These faults can
be detected by checking the predicates and assertions with
Alloy. Our case study shows that the above verification
process can detect most faults in a security solution; see
Section VI.

D. Prototype Tool A2A

This subsection presents a prototype tool called A2A. It
has been developed in Java to transform specifications in
SOFIA into Alloy formalism. As shown in Figure 4, A2A
contains three main components.

1) SOFIA Parser parses the specification written in
SOFIA, checks that it is syntactically well-formed, and
checks that the equations in the axioms are type correct.

Figure 4. The Structure of Tool A2A

2) Specification Converter takes the parse tree of a SOFIA
specification as input, and transforms that specification into
an Alloy specification according to Algorithms 1 and 2.
The Sort Converter analyses the signature of the algebraic
specification and converts it into sorts and operations in
the Alloy formalism. The Axiom Converter analyses the
axioms, extracts the operations and adjusts the structure of
the equations, and finally, converts the axioms into facts,
predicates or assertions in Alloy formalism.

3) Alloy Generator generates an Alloy specification doc-
ument as the end result of the conversion.

Figure 5 shows A2A’s graphic user interface. The buttons
enable the users to load SOFIA specifications, convert
them to Alloy code, and save the result into a file. The
specification panel, on the left hand side, displays the SOFIA
specification to be converted. The result panel, on the right,
displays the resulting Alloy code. The message panel at the
bottom of the window shows the status of transformation
and the error messages, if any.

VI. CASE STUDY

This section presents a case study of the proposed tech-
nique and the tool A2A with the security design of a real
world service-oriented system.

The case study aims to answer two research questions:

1) Usability: Is the proposed approach practical? In par-
ticular, how complex are the specifications of security
patterns, their compositions and the abstract specifica-
tions of security requirements? How time consuming
is the verification of a security solution against an
abstract specification?

2) Effectiveness: Is the proposed approach effective to en-
sure the correctness of security designs? In particular,
can it detect faults in the specification of the security
requirements and the specification of the design of se-
curity solutions represented as composition of security
design patterns.

This section reports the findings from the case study to
answer these questions.

7

Figure 5. A2A’s Graphic User Interface

A. The Subject

The subject of the case study is the Blockchain-enabled
CrowdFunding application BCF developed by IBM [31].
The functions of BCF include viewing crowdfunding events,
donating to events and viewing donation records. The case
study is to make a security design that enhances the se-
curity of the application by adding several new security
mechanisms. The enhanced security solution is modelled and
formally specified using the algebraic specification language
SOFIA. The specification is then converted into the Alloy
formalism to verify the correctness of the security design.
The extended system is called EBCF in the sequel.

There are three subsytems in EBCF:
• event management is in charge of the creation and

termination of fund raising events;
• account management provides functions of recharge

and withdrawal of fund to accounts;
• donation management makes donations and viewing

donation records.
The structure of EBCF is depicted in Figure 6.

Figure 6. The Structure of EBCF

B. Specification of BCF in SOFIA

Four security design patterns are used in the design of the
security solution:

• Log for logging the operations on the user’s account,
• Emergency Stop for disabling sensitive operations,
• Rate Limit for regulating how often an operation can

be called consecutively, and
• Owner for checking the ownership of events/entities.

These patterns and all the modules in EBCF have also
been specified in SOFIA1. The specification consists of a
number of packages such that each may contain several
specification modules. Figure 7 shows the specification
packages and their relationships. Basic packages Basic and
UtilOp specify the basic data types and utility operations
of the system. On top of them are level 1 packages, which
include (a) Log which is an instantiation of security pat-
tern Log, (b) Stop an instantiation of pattern Emergency
Stop, (c) Rate an instantiation of pattern RateLimit, (d)
Account, for managing the user’s account, (e) EventM an
instantiation of pattern Owner for managing events, and (f)
DonateM , for making donations to events. On top of the
level 1 are packages of the abstract specification AccountM
and its implementation specification AccountMImp of the
composition module AccountM for limiting how frequently
the withdraw function can be called. Finally, the top-level
packages EBCF and EBCFImp specify the whole system
EBCF.

1The specification in SOFIA and the generated code in Alloy can be
found at https://github.com/SP-Case/SP-Case-Study

8

Figure 7. The Specification Structure of EBCF

C. Complexity of The Specifications

Our case study found that the specifications of security
design patterns, their compositions and abstract security
requirements are very simple and easy to write. Table II
gives the number of sorts, operations, and axioms in various
SOFIA specification units and the total number of lines of
each specification unit.

Table II
STATISTICS OF SOFIA SPECIFICATIONS

Spec Unit #Sort #Ops #Axioms LOC
Log 5 2 10 64
Stop 2 2 6 34
Rate 7 3 14 99

Account 4 3 20 91
EventM 5 5 44 151

DonateM 5 1 19 80
AccountMImp 2 1 6 31

AccountM 1 1 11 41
EBCFImp 5 4 25 97

EBCF 1 4 48 151

Our case study also found that in most cases the Alloy
code generated from a specification unit in SOFIA is of
similar sizes to the SOFIA specification. Table III gives the
number of modules and asserts and the total number of lines
of the Alloy module generated by A2A.

Table III
STATISTICS OF ALLOY SPECIFICATIONS

Module #Sig #Fact #Pred #Assert LOC
Log 4 0 2 5 46
Stop 1 0 2 2 27
Rate 6 2 3 3 81

Account 3 1 3 5 97
EventM 4 2 5 11 153

DonateM 4 1 1 3 70
AccountM 1 0 1 11 58

EBCF 4 0 4 48 244

However, as shown in Figure 3, specifications in SOFIA
are more readable and easier to write than Alloy code. In
particular, Alloy code is essentially execution instructions
for the Alloy model checker. In contrast, SOFIA is more
abstract and independent of the verification mechanism.

Another advantage of writing specification in SOFIA
over writing in Alloy’s formalism directly is that when the

composition is in a hierarchical structure as we proposed
in this paper, the axioms in an abstract specification of
composition are the target to be verified from the axioms of
its design specification and the axioms of its components.
Once these axioms are verified, they can be used to verify
the composition at a higher level. If the specifications are
written in Alloy formalism directly, this means the axioms
must be written twice; once as the verification; and once as
facts or assertions to verify other properties. Moreover, in
addition to verifying the functional correctness of the design
solutions as discussed above, each of the axioms is also used
more than once for different proof obligations: the soundness
of the composition of components and patterns together, the
soundness of instantiation of a pattern.

The proposed approach enables verifications be performed
on a smaller scale instead of putting all the modules together.
Our case study shows that time needed to execute Alloy to
verify the security design of EBCF is feasible.

We used the model checker Alloy Analyzer to verify
the predicates and assertions in basic modules Log, Stop,
Rate, Account, EventM and DonateM. Then the predicates
and assertions that specify the operations in composition
modules AccountM and EBCF are checked to verify the
validity and correctness of pattern compositions, while the
assertions specifying the security requirements are checked
to verify the security properties of the system. For example,
the specification of EBCF in the Alloy formalism consists of
4 predicates, which are 48 assertions specifying the proper-
ties of operations and system’s behaviour as the security re-
quirements. During the verification, instances were success-
fully generated for both the predicates defining operations
and for the rewritten assertions. No counterexample was
generated for the assertions. This means that the composition
of patterns meets the security requirements defined by the
specifications.

Table IV shows the time taken to verify various assertions
for a number of instances ranging from 10 to 20. The time
that Alloy model checker takes to verify an assertion is
exponential in the size of the module. Our approach helps
to reduce the number of modules and thus the number
of assertions in each verification. The data show that the
approach is practically useful.

D. Effectiveness to Detect Errors

In order to study the effectiveness of error detection, we
injected some faults into the axioms of SOFIA specifica-
tions and verified these faulty specifications to evaluate the
effectiveness of the proposed method in detecting faults.

The faults were injected into algebraic specifications
according to the specification mutation operators defined
by Woodward [32]. These mutation operators are designed
to simulate common errors made by software engineers.
Typical examples of the operators include replacing con-
stants, variables and operations in axioms, adding or deleting

9

Table IV
EXECUTIONS TIMES TO VERIFY AN ASSERT (MS)

Module Assert 10 Ins 15 Ins 20 Ins
Stop assert1 2 37 49 138
Account assert1 61 277 615
Account assert2 3 61 342 178
AccountM withdraw1 3 93 105 108
EBCF withdrawWithLog1 5 178 1970 1060
EBCF stopAndPayWithLog1 7 191 199 710
EBCF donateWithLog1 6 220 883 1474
Rate assert1 2 339 512 997
EBCF rechargeWithLog1 4 385 584 410
EBCF assert23 26 456 966 413
Account assert4 5 554 4676 6850
AccountM assert1 8 637 1679 2245
DonateM assert1 3 765 1930 1859
Log assert1 5 847 1332 3887
EBCF assert1 6 3494 24714 12175
EBCF assert7 13 6207 13494 15546
EventM assert1 4 8648 102794 383472
EventM assert5 7 26194 131138 340009
EventM assert8 11 81292 421072 1051382
EBCF assert14 22 85418 1134374 3461973

Total (ms) 216077 1843090 5285501
(minutes) 3.60 30.72 88.09

axioms, and deleting the if conditionals of axioms. Most of
these faults change the operation pre/post conditions or their
invocations, making the specification fail to meet the security
requirements. The following is such an example.

//axiom 1
es.estop(uid,s).value = false, if s.admin = uid;
//Fault injected axiom 1 (replace constant)
es.estop(uid,s).value = true, if s.admin = uid;

//axiom 2
am.withdraw(...).ure = a.subBalance(...);
//Fault injected axiom 2 (replace operation)
am.withdraw(...).ure = a.addBalance(...);

Axiom 1 specifies the operation estop in the Stop module
and requires that the attribute value of sort Status is set
to false if the user who invokes the operation is admin.
In axiom 1 with the injected fault, the constant false is
replaced with true, resulting in an error in the post condition
definition of estop. Axiom 2 specifies the operation withdraw
in the AccountM module and states that the operation
withdraw will invoke the subBalance operation on Account
to decrease the user’s balance. In faulty axiom 2, subBalance
is replaced with addBalance, resulting in invocation of the
wrong operation in withdraw.

A total of 150 faults were injected into the specification
and each generated a mutant specification. The data show
that more than 90% of faults can be detected; see Table V.

However, 12 out of 150 mutant specifications go un-
detected. In these 12 mutants, 5 mutants are equivalent
to the original specification. These are modifications of
the specification that do not change the behaviour of the
operation; these include replacing a constant that has no
effect on the operation result, adding a redundant axiom or
an axiom with an if condition that can never be satisfied.

For example, consider the axioms of operation subBal-

Table V
VERIFICATION RESULTS OF DEFAULT INJECTION

Fault
Result Basic

module
Composition
module

Total Rate(%)

Replace constant 11/12 11/11 22/23 95.7
Replace variable 20/23 18/18 38/41 92.7
Replace operation 6/6 4/4 10/10 100
Delete axiom 22/25 11/11 33/36 91.2
Add axiom 6/8 8/10 14/18 77.8
Delete condition 11/12 10/10 21/22 95.5
Total 76/86 62/64 138/150 92

ance in Account. They assert that the account’s balance is
decreased by the value of input param n and the new balance
is returned, if the value of n is less than or equal to the
current balance; otherwise the balance is not changed and
the operation returns null. The mutation operator inserts
an axiom that if the operation does not return null, the
balance returned by the operation is greater than or equal
to 0. This inserted axiom is redundant and has no effect on
the behaviour of the subBalance operation.
let u = util.getDataById(uid,db) in
a.subBalance(uid,n,db).user.balance = u.balance-n,
if u.balance >= n;
a.subBalance(uid,n,db).user = null,
if u.balance < n;
//injected axiom
a.subBalance(uid,n,db).user.balance >= 0,
if a.subBalance(uid,n,db).user <> null;

Another finding of the case study is that the faults in
certain security scenarios cannot be detected if there is no
axiom in the specification about such scenarios. In other
words, the incompleteness of a formal specification cannot
be detected. The remaining 7 undetected faults all belong to
this type. For example, the mutant is formed by deleting the
condition of the axiom for event management for paying to
the event creator after the termination of the event. This
condition prevents repeat payment by checking whether
the event has been successfully terminated before. Since
there are no axioms that define the scenario of repeated
termination, this fault cannot be detected.

VII. CONCLUSION AND FUTURE WORK

In this paper, we developed a method for the formal
specification and verification of security patterns and their
compositions for online service systems using the alge-
braic specification language SOFIA. A tool A2A has been
implemented to transform SOFIA specification into Alloy
formalism so that the verification of security designs can be
automated. A case study with a crowdfunding application
demonstrated the effectiveness of the proposed approach.

We are currently constructing a library of specifications of
security patterns. We are also conducting more case studies
with real-world examples of service-oriented applications.

Existing works on the formal verification of design pat-
tern compositions have all been on the consistency of the

10

resultant system or the validity of the uses of patterns in
the system. As far as we know, there is no work either on
proving functional correctness of pattern compositions in
general, nor on functional correctness of security designs.
Our approach has the advantage of algebraic specifications
in which structural, functional and behavioural properties
can be specified in a unified framework. We believe that our
approach can be extended for more general design patterns.
This is an interesting direction for future work.

After proving that an instantiation and composition of
patterns satisfy the functional requirements of the system as
we did in this paper, we can reduce the proof obligations that
an implementation of a system satisfies the overall security
requirements that each module in the system satisfies the
axioms in its corresponding specification module. This will
significantly reduce the difficulty and complexity of formal
verifications. Another possibility for future work is to inves-
tigate how to realise this.

Another advantage of algebraic specification is that it
enables automated testing of software against formal spec-
ifications [23], [24]. These test automation techniques can
be applied to the implementation of system security design
formally specified in algebraic specifications. A possibility
for future work is to conduct experiments on this automated
testing.

ACKNOWLEDGEMENT

The work is partially supported by the National Science
Foundation of China (Grant No. 61502233).

REFERENCES

[1] C. Blackwell and H. Zhu, Eds., CyberPatterns: Unifying
Design Patterns with Security Patterns and Attack Patterns.
Springer, 2014.

[2] B. Hamid and D. Weber, “Engineering secure systems: Mod-
els, patterns and empirical validation,” Computers & Security
77, pp. 315–348, 2018.

[3] J. Yoder and J. Barcalow, “Architectural patterns for enabling
application security,” in Proc. of PLoP’97, vol. 2, 1997.

[4] P. H. Nguyen, K. Yskout, T. Heyman, J. Klein, R. Scandari-
ato, and Y. Le Traon, “Sospa: A system of security design
patterns for systematically engineering secure systems,” in
Proc. of MODELS 2015. IEEE, 2015, pp. 246–255.

[5] M. Wohrer and U. Zdun, “Smart contracts: security patterns
in the ethereum ecosystem and solidity,” in Proc. of IWBOSE
2018, pp. 2–8.

[6] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson,
F. Buschmann, and P. Sommerlad, Security Patterns: Inte-
grating security and systems engineering. John Wiley & Sons,
2013.

[7] E. Fernandez-Buglioni, Security patterns in practice: design-
ing secure architectures using software patterns. John Wiley
& Sons, 2013.

[8] J. Dong, T. Peng, and Y. Zhao, “Automated verification
of security pattern compositions,” Information and Software
Technology 52(3), pp. 274–295, 2010.

[9] B. Hamid, S. Gürgens, and A. Fuchs, “Security patterns
modeling and formalization for pattern-based development
of secure software systems,” Innovations in Systems and
Software Engineering 12(2), pp. 109–140, 2016.

[10] A. K. Dwivedi and S. K. Rath, “Formalization of web security
patterns,” INFOCOMP 14(1), pp. 14–25, 2015.

[11] X. He and Y. Fu, “Modeling and analyzing security patterns
using high level petri nets.” in Proc. of SEKE 2016, pp. 623–
627.

[12] A. Norta, R. Matulevcius, and B. Leiding, “Safeguarding a
formalized blockchain-enabled identity-authentication proto-
col by applying security risk-oriented patterns,” Computers &
Security, 2019.

[13] J. Jürjens, “UMLSec: Extending UML for secure systems
development,” in Proc. of UML’02, Springer, pp.412–425.

[14] H. Schmidt and J. Jürjens, “Connecting security requirements
analysis and secure design using patterns and umlsec,” in
Proc. of AISE 2011, Springer, pp. 367–382.

[15] D. Jackson, Software Abstractions: logic, language, and anal-
ysis. MIT Press, 2012.

[16] X. He, “A comprehensive survey of petri net modeling in
software engineering,” Int’l Journal of Soft. Eng. and Knowl.
Eng. 23(5), pp. 589–625, 2013.

[17] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured petri
nets and cpn tools for modelling and validation of concurrent
systems,” Int’l J. on Software Tools for Technology Transfer
9(3-4), pp. 213–254, 2007.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns - Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[19] R. B. France, D.-K. Kim, S. Ghosh, and E. Song, “A UML-
based pattern specification technique,” IEEE Trans. Softw.
Eng. 30(3), pp. 193–206, 2004.

[20] I. Bayley and H. Zhu, “Formal specification of the variants
and behavioural features of design patterns,” J. of Systems
and Software 83(2), pp. 209–221, Feb. 2010.

[21] H. Zhu and I. Bayley, “An algebra of design patterns,” ACM
Trans. on Soft. Eng. and Meth., 22(3), Article 23, 2013.

[22] ——, “On the composibility of design patterns,” IEEE Trans.
Soft. Eng. 41(11), pp. 1138–1152, Nov. 2015.

[23] D. Liu, Y. Liu, X. Zhang, H. Zhu, and I. Bayley, “Automated
testing of web services based on algebraic specifications,” in
Proc. of SOSE 2015, IEEE, pp. 143–152.

[24] D. Liu, X. Wu, X. Zhang, H. Zhu, and I. Bayley, “Monic
testing of web services based on algebraic specifications,” in
Proc. of SOSE 2016, IEEE, pp. 24–33.

[25] X. Zhang, D. Liu, H. Zhu, Y. Chen, B. Lan, and Y. Sun,
“A test execution engine for automated web services testing
based on algebraic specifications,” Computer Engineering &
Science 46(1), pp. 114–121, 2018.

[26] H. Zhu and B. Yu, “An experiment with algebraic specifica-
tions of software components,” in Proc. of QSIC 2010. IEEE,
pp. 190–199.

[27] D. Liu, H. Zhu, and I. Bayley, “Applying algebraic specifi-
cation to cloud computing–a case study of infrastructure-as-
a-service goGrid,” in Proc. of ICSEA 2012, pp. 407–414.

[28] ——, “A case study on algebraic specification of cloud
computing,” in Proc. of 21st Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing.
IEEE, 2013, pp. 269–273.

[29] Y. Chen, D. Liu, H. Zhu, B. Lan, and J. He, “Algebraic
specifications of service composition,” Computer Engineering
& Science 2018(6), p. 18, 2018.

[30] D. Liu, H. Zhu, and I. Bayley, “Sofia: An algebraic specifi-
cation language for developing services,” in Proc. of SOSE
2014, IEEE, pp. 70–75.

[31] IBM, “blockchain-enabled-crowdfunding,” https:
//github.com/IBM/blockchain-enabled-crowdfunding, last
access: Dec 14, 2019.

[32] M. R. Woodward, “Errors in algebraic specifications and an
experimental mutation testing tool,” Software Engineering
Journal 8(4), pp. 211–224, 1993.

11

