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Abstract

This paper presents an automated tool called Morphy
for datamorphic testing. It classifies software test artefacts
into test entities and test morphisms, which are mappings
on testing entities. In addition to datamorphisms, metamor-
phisms and seed test case makers, Morphy also employs
a set of other test morphisms including test case metrics
and filters, test set metrics and filters, test result analysers
and test executers to realise test automation. In particu-
lar, basic testing activities can be automated by invoking
test morphisms. Test strategies can be realised as com-
plex combinations of test morphisms. Test processes can
be automated by recording, editing and playing test scripts
that invoke test morphisms and strategies. Three types of
test strategies have been implemented in Morphy: datamor-
phism combination strategies, cluster border exploration
strategies and strategies for test set optimisation via ge-
netic algorithms. This paper focuses on the datamorphism
combination strategies by giving their definitions and im-
plementation algorithms. The paper also illustrates their
uses for testing both traditional software and AI applica-
tions with three case studies.

1. Introduction

With the rapid growth of artificial intelligence (AI) in
computer applications, ensuring the quality of software
components that employ AI techniques becomes indispens-
able to software engineering. However, testing AI appli-
cations is notoriously difficult and prohibitively expensive
[10]. It is highly desirable to advance software test automa-
tion techniques that meet the requirements of testing AI ap-
plications.

Datamorphic testing has been proposed recently as an
approach to software test automation [30]. In this method,
test automation focuses on the development and application
of three types of test code. Seed makers generate test cases.

Datamorphisms transform existing test cases into new ones.
Metamorphisms assert the correctness of test cases. Exper-
iments [30, 31, 19, 3] have demonstrated that it is effective
at testing AI applications.

However, while datamorphic testing activities can be au-
tomated by writing project specific test code, it is highly
desirable to develop a general testing tool to achieve the
following requirements of test automation.

1. Reusibility of the test code of datamorphisms, meta-
morphisms, seed makers, etc, to be reused even across
different projects.

2. Composability of test code in different combinations to
conduct different experiments with the software under
test.

3. Constructability of users’ own test automation pro-
cesses from existing test code so that the testing pro-
cess can be repeated.

To achieve these goals, this paper extends the datamor-
phic testing framework by introducing the notion of test
morphisms and presents an automated test tool called Mor-
phy1. It enables test automation at three levels. At the
lowest level, various test activities can be performed by in-
voking test morphisms via a click of buttons on Morphy’s
GUI. At the medium level, Morphy implements various test
strategies to perform complicated testing activities through
combinations and compositions of test morphisms. At the
highest level, test processes are automated by recording,
editing and replaying test scripts that consist of a sequence
of invocations of test morphisms and strategies.

The paper is organised as follows. Section 2 extends
the datamorphic testing framework. Section 3 presents the
Morphy test tool. Section 4 defines a set of strategies that
combines datamorphisms to generate test data. Section 5
reports three case studies to demonstrate the uses of Mor-
phy. Section 6 concludes the paper by a comparison with
related work and a discussion of future work.

1Available at https://github.com/hongzhu6129/MorphyExamples.git
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2. Extended Datamorphic Testing Framework

We extend datamorphic testing method by classifying
the software artefacts involved in software testing into two
kinds: entities and morphisms.

Test entities are objects and data used and/or generated
in testing, which include test cases, test suites, the program
under test, and test reports, etc.

Test morphisms are mappings between entities. They
generate and transform test entities to achieve testing ob-
jectives. They can be implemented by writing test code.
They can be invoked to perform test activities and com-
posed to form test processes. Obviously, datamorphisms,
metamorphisms and seed makers in the existing model of
datamorphic testing are all test morphisms. However, there
are other types of test morphisms that play crucial roles in
test automation.

A software test specification in this extended framework
specifies both of these artefacts and enables them to be in-
voked, composed as well as reused as a test library. In Mor-
phy, a test specification is a Java class that declares a set
of attributes for test entities and a set of methods for test
morphisms.

In this section, we discuss how they are defined in order
to meet the requirements of test automation.

2.1. Test Entities

Test cases and test suites are the most important kinds
of entities on which test morphisms are defined. To enable
the definition of various test morphisms, a test case must
contain not only information about the input and output of
the software, but also information about the following:

• How the test case is generated. Two particular
pieces of information about the test case are recorded:
whether it is a seed or a mutant, and which test mor-
phism generates the test case. In the sequel, the former
is called the feature of the test case, the latter is called
the type of the test case.

• How a test case is related to other test cases. If a test
case is generated by using a datamorphism, the iden-
tities of test cases on which the datamorphism applied
are recorded, and they are called the origins of the test
case.

• The correctness of the test case. In datamorphic test-
ing, the correctness of a test case is checked against
metamorphisms. Each metamorphism can be a par-
tial correctness condition. Therefore, test case may
pass some of the metamorphisms but fail on the oth-
ers. Therefore, the correctness of a test case is a set
of records of checking the test case against metamor-
phisms. We will use the following format to record the

correctness:

{metamorphismName : (pass|fail)}∗

A test suite consists of a list of test cases. Each test case
is also assigned with a universally unique identifier (UUID).
Therefore, the relationships between test cases can be de-
fined by references to their UUIDs.

The Morphy testing tool defines two generic classes Test-
Case and TestPool for representing test cases and test suites,
respectively. They have two type parameters for the input
and output datatypes.

The generic class TestCase consists of attributes for (a)
the UUID of the test case, (b) the input data, (c) the output
data, (d) the feature, (e) the type of the test case, (f) the list
of origins, and (g) the correctness of the test case.

The generic class TestPool consists of a list of TestCases
and a number of methods for the operations of the test suite,
such as adding and removing test cases to/from the test
suite. The test suite used in the testing of the software is
declared as an attribute of TestPool type and annotated with
metadata @TestSetContainer. A test specification class can
also have attributes and methods without annotations. For
examples, an attribute of TestPool type without annotation
@TestSetContainer can be used as an auxiliary test set.

The source code of the TestCase and TestPool can be
found in [29].

2.2. Test Morphisms

In addition to the three components of the original data-
morphic testing model, we identify the following types of
test morphisms that are useful to automate software testing.
• Test case metrics are mappings from test cases to real

numbers. They measure test cases, for example, on the
similarity of a test case to the others in the test set.
• Test case filters are mappings from test cases to truth

values. They can be used, for example, to decide
whether a test case should be included in the test set.
• Test set metrics are mappings from test sets to real

numbers. They measure the test set, for example, on
its quality, such as code coverage.
• Test set filters are mappings from test sets to test sets.

A typical example is to remove some test cases from a
test set for regression testing.
• Test executers execute the program under test on test

cases and receive the outputs from the program. They
are mappings from a piece of program to a mapping
from input data to output. That is, they are functors in
category theory.
• Test result analysers analyse test results and generate

test reports. Thus, they are mappings from test set to
test reports.
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2.3. Test Specifications

A Morphy test specification is a Java class, which de-
clares a set of attributes as test entities and a set of meth-
ods as test morphisms; see [29] for an example. Each test
morphism is annotated with a metadata to declare the type
of test morphism that the method belongs to. Table 1 lists
the annotations and datatypes of various types of test mor-
phisms as implemented in Morphy.

Table 1. Annotations of Test Morphisms
Morphism Annotation Parameter Return
Seed Maker @SeedMaker Nil Void
Datamorphism @Datamorphism TestCase TestCase
Metamorphism @Metamorphism TestCase Boolean
Test Case Metrics @TestCaseMetrics TestCase Real
Test Case Filter @TestCaseFilter TestCase Boolean
Test Set Metrics @TestSetMetrics Nil Real
Test Set Filter @TestSetFilter Nil Nil
Test Executer @TestExecuter Input Output
Analyser @Analyser Nil Void

3. Test Tool Morphy

As shown in Figure 1, Morphy consists of three main fa-
cilities: test set management, test runner and test scripting.

Graphic User Interface 

Test Scripts

Test Scripting Facility

Test Script 
R
unner

Test Script 
R
ecorder

Test Set

Test Set Management

Test Set Loader

Test Set Saver

Test Set Editor

Test Runner

Program 
Under Test

Test Strategies

Test M
orphism

  
Executor

Java IDE

Test Spec (Bytecode)

Test Script 
M
anager

Test M
orphism

  
Loader

Test Script Repository Test Set Repository 
Test Spec 
Repository

Figure 1. The Architecture of Morphy

The test set management facility enables test sets to be
saved into files, loaded from files and edited in a graphic
user interface. The test runner enables test specifications to
be loaded into the system and various test morphisms of the
test specification to be invoked. It also implements various
test strategies. The test scripting facility enables interactive
testing activities to be recorded as test scripts, saved into
files, reloaded from files and replayed.

Test specifications can be developed with any Java IDE,
but a wizard has been developed as an Eclipse plugin to

generate new skeleton Java class of test specification.
Morphy’s main graphic user interface shown in Figure 2

provides a user friendly environment in which testing arte-
facts can be managed, basic testing activities can be per-
formed and automated testing facilities can be invoked.

At the very the top of Morphy’s main window are four
panels of buttons for the management of test entities, per-
forming test activities by invoking various types of test mor-
phisms, applying test strategies, and recording-replaying
test scripts, respectively.4.1 Main window 

Figure 1 below shows Morphy's main user interface.  

 

Figure 1. Morphy's Main Window 

At the top of Morphy's main window are four panels of buttons. This first set of buttons in the Management panel 
are functions to manage the artefacts of software testing, which include   

a) load a Morphy test specification,  
b) load a previously saved test set from a file, which contains intermediate results of testing, 
c) save the current test set into a file, which contains the current state of the testing, 
d) clean up the system by removing all test cases, messages in the message areas, and the test scripts, etc.   

It also gives the class name of the current loaded test specification.  

The Activity panel enables the user to perform basic testing activities by invoking various types of test morphisms. 
These testing activities include the following; see Section 5 for details.  

a) Seed: to generate seed test cases using selected seed maker methods;  
b) Mutate: to generate mutant test cases using selected datamorphisms;  
c) Filter: to remove test cases from the current test set using selected test set filters;  
d) Edit test: to show the test cases in the current test pool and to enable manual editing of the test results;  
e) Measure: to measure the current test set by invoking the selected test set metrics;  

Figure 2. Morphy’s Main GUI

Three sets of test strategies have been implemented in
Morphy:
• Mutant combination: combining datamorphisms to

generate mutant test cases;
• Domain exploration: searching for the borders be-

tween clusters/subdomains of the input space;
• Test set optimisation: optimising test sets by employ-

ing genetic algorithms.

Due to the limitation of space, this paper focuses on the mu-
tant combination strategies, which is given in Section 4. The
other two types of test strategies will be reported separately.

The test script facility allows the user to automate the
testing process. It is particularly useful for repeated testing
processes, such as in regression testing and repeated exper-
iments with the software under test to obtain data for statis-
tical analysis.

The left-hand side of the main window is a list of tables
that shows various types of test morphisms. The elements in
these tables can be selected by clicking on the check boxes
on the first column as input to perform the interactive and
automatic testing functions.

The right-hand side contains two message panels. The
upper one reports the testing activities performed and their
outcomes. The lower report errors detected by checking the
test results against metamorphisms.
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4. Mutant Combination Strategies

Let T be the set of all possible test cases for the software
under test. S ⊂ T be a set of test cases. D be a set of
datamorphisms and d ∈ D is a datamorphism in D. We say
that d is k-ary (k > 0), if d : T k → T .

Definition 1 (First Order Mutants)
A test case y ∈ T is called a first order mutant test case,

or simply a first order mutant, of S generated by D, if there
is a k-ary datamorphism d ∈ D and test cases x1, · · · , xk ∈
S such that y = d(x1, · · · , xk).

A set C of test cases is first order mutant complete with
respect to S and D, if S ⊆ C, and for each d : T k → T ∈
D, and each xi ∈ S, i = 1, · · · , k, there is a test case y ∈ C
such that y = d(x1, x2, · · · , xk), where d is k-ary. ut

In other words, a test set is first order mutant complete
if it contains every seed and every first order mutant. A test
strategy is to test the software with all the seeds and all the
first order mutant test cases generated from the seeds using
selected datamorphisms.

The following algorithm generates the minimal test set
that is first order mutant complete with respect to a give set
of seed test cases and a set of datamorphisms.

Algorithm 1 (Generate 1st Order Mutant Complete Tests)

Input: S = the set of seed test cases;
D = the set of datamorphisms;

Output: C = a set of test cases;
Variables: tempT = temporal set of test cases;
Begin

C = EmptySet;
for (each datamorphism d in D){

tempT = EmptySet;
Assume that d is a k-ary datamorphism;
forall k-tuples (x1,... ,xk) of S {

add d(x1,... ,xk) to tempT;
};
C = C + tempT;

};
return C + S;

End

The following theorem asserts the correctness of the al-
gorithm. The proof can be found in [29].

Theorem 1 The test set generated from S using D by Al-
gorithm 1 is the minimal set of test cases that is first order
mutant complete with respect to S and D. ut

For example, consider a software system that takes a
point in the two-dimensional space of real numbers and
classifies the points into three subdomains: the red, the blue
and the black areas. The test set initially contains 100 ran-
dom points. The datamorphism is to add the middle point of
two test cases. Applying Algorithm 1 produces a first order
mutant complete test set, which contains 10000 test cases.
Figure 3 (a) and (b) below shows the results of testing on the

(a) Original Test Set

(b) 1st Order Mutant Complete Test Set

Figure 3. Test Results

original 100 random test cases and on the 1st order mutant
complete test set, respectively.

Datamorphisms can also be applied to test cases multiple
times to generate mutants of mutants, which are called high
order mutants. For the sake of convenience, a test case x ∈
S is called a 0’th order mutant of S.

Definition 2 (Higher order mutants)
A test case y is a second order mutant of S by D, if there

is a k-ary datamorphism d ∈ D and k test cases x1, · · · , xk
such that y = d(x1, · · · , xk) and for all xi, xi is either in
S or a first order mutant of S by D, and at least one of
x1, · · · , xk is a first order mutant of S by D.

A test case y is an n’th order mutant of S by D (n > 1),
if there is a k-ary datamorphism d ∈ D and k test cases
x1, · · · , xk such that y = d(x1, · · · , xk) and xi are m’th
order mutants of S by D, where m < n, and at least one of
x1, · · · , xk is a (n− 1)’th order mutant of S by D. ut

Similar to first order mutant completeness, a test set is
2nd order mutant complete if it contains all seed test cases,
all 1st order mutants and all 2nd order mutants. In general,
we have the following definition.

Definition 3 (K’th order mutant completeness) A set C of
test cases is k’th order mutant complete with respect to S
and D, if it contains all i’th order mutant test cases of S by
D for all i = 0, · · · , k. ut

The following can be proved based on Theorem 1 by in-
duction on the order K.

Corollary 1 of Theorem 1. By repeating Algorithm 1 for
K times that each time uses the output test set as the input
to the next invocation of the algorithm, the result test set is
the minimal K’th order mutant complete. ut

Assume that the set D of datamorphisms contains N
methods. If a test set is N ’th order mutant complete with

4



respect to S and D, it contains all permutations of the data-
morphisms applied to all test cases. We say that the test set
is permutation complete. If the datamorphisms are associa-
tive, commutative, distributive and idempotent, a permuta-
tion complete test set contains all possible test cases that can
be derived from a give set of test cases using the set of data-
morphisms. The test set is therefore exhaustive with regard
to the set of seeds and the datamorphisms. It usually con-
tains a huge number of test cases, so the cost of testing can
be very high. A compromise is to cover the combinations
of datamorphisms.

A mutant of S byD can be represented as a tree on which
the leaf nodes are test cases in S, and the non-leaf nodes are
datamorphisms in D. The order of a mutant is the height of
the tree. Figure 4 below shows some examples of mutants,
in which (a) and (b) are first order mutants, and (c) to (f) are
second order mutants.
 

 

  

 

 

 

Figure 7. Examples of tree representation of mutants 

Given a mutant's tree representation, we now replace the test cases associated to the leaf nodes with variables in 
such a way that each different leaf node is associated with a different variable that range over the seed test cases. 
We can then obtain a function that generates a high order mutant when substitutes the variables with seed test 
cases. Each tree structure of this kind is therefore a way to combine seed test cases to make a higher order mutant 
test case. We say that a combination is !-ary, if it contains ! variables (which is equivalent to the number of leaf 
nodes). In the sequel, we write "($%, . . . , $() to represent such a combination of datamorphism. When applying 
such a !-ary datamorphism combination " to seed test cases *%, . . . , *(, we write + = 	"(*%, . . . , *() to denote 
the result mutant test case. Let {/%, … , /1} be the set of datamorphisms in the tree, we also say that " is a 
combination of {/%, … , /1}. Given a set 3 of datamorphisms, there may be many different combinations of 3.  

Definition 6 (Complete set of combinations) A set 4 of datamorphism combinations is complete for 3, if for each 
subset 35 ⊆ 	3, there is a combination " ∈ 4 that contains exactly the datamorphisms in 3'. □ 

Definition 7 (Combinatorial complete test sets) A set 94 of test cases is combinatorial complete with respect to : 
and 3, if 

a) there is a set 4 of datamorphism combinations that is complete with respect to 3; and  
b) for each combination " ∈ 4, if " is !-ary then for each ! test cases $%, . . . , $( ∈ 	:, there is a test case 

+ in 94 such that +	 = 	"($%, . . . , $(). □ 

The following is an algorithm that generate a combinatorial complete test set.  

Algorithm 2. (Generate combinatorial complete test set)  

 Input:  : = the set of seed test cases; 
   3 = the set of datamorphisms; 
 Output:  4 = a set of test cases that is combinatorial complete; 
 Variables: ;<=>9 = temporal set of test cases;  
 Begin 
1:   ;<=>9 = ∅	;  
2:   for (each datamorphism / ∈ 	3) { 
2.1:   ;<=>9 = ∅ ;  
2.2:   Assume that / is a !-ary datamorphism, where ! > 0; 
2.3:    for (all !-ary tuples ($%, . . . , $() of elements in :){ 
    add /($%, . . . , $() to ;<=>9; 
   }; 
2.4:   : = : ∪ 	;<=>9;  
  }; 
3:   return 4 ∪ 	:;  
 End  

Theorem 2. The test set generated by Algorithm 2 is combinatorial complete with respect to : and 3.  
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Figure 4. Examples of Mutant Trees

Given a mutant’s tree representation, by replacing the
test cases associated to the leaf nodes with variables in such
a way that each different leaf node is associated with a dif-
ferent variable that ranges over the test cases, we can then
obtain a function that generates a high order mutant when
substitutes the variables with seed test cases. Each tree of
this kind is therefore a way to combine datamorphisms to
make higher order mutant test cases from seed test cases.
We say that a combination c is k-ary, if it contains k vari-
ables, which is equivalent to the number of leaf nodes. We
write c(x1, · · · , xk) to represent such a combination of data-
morphism. When applying c to seed test cases a1, · · · , ak,
we write y = c(a1, · · · , ak) to denote the result mutant test
case. Let {d1, · · · , dv} be the set of datamorphisms in the
tree, we also say that c is a combination of {d1, · · · , dv}.
Given a set D of datamorphisms, there may be many differ-
ent combinations of D.

Definition 4 (Complete set of datamorphic combinations)
A set C of datamorphism combinations is combinatorial

complete for D, if for all subsets D′ ⊆ D, there is a com-
bination c ∈ C that contains exactly the datamorphisms in
D′.

A set V of test cases is combinatorial complete with re-
spect to S and D, if

• there is a set C of datamorphism combinations that is
combinatorial complete with respect to D; and

• for every combination c ∈ C, if c is k-ary, then for all
k-tuple of test cases (x1, · · · , xk) ∈ Sk, there is a test
case y in V such that y = c(x1, · · · , xk). ut

The following is an algorithm that generates a combina-
torial complete test set.

Algorithm 2 (Generate Combinatorial Complete Test Set)

Input: S = the set of seed test cases;
D = the set of datamorphisms;

Output: C = a set of test cases;
Variables: tempT = temporal set of test cases;
Begin

for (each datamorphism d in D) {
tempT = empty_set;
Assume d is a k-ary, where k>0;
for (all k-tuples (x1,...,xk) of S){

add d(x1,...,xk) to tempT;
};
S = S + tempT;

};
return C + S;

End

Theorem 2 The test set generated by Algorithm 2 is com-
binatorial complete with respect to S and D. ut

Note that, the test set generated by Algorithm 2 may be
not minimal in size if there is a datamorphism that is non-
unary.

5 Case Studies

We have conducted three case studies on the develop-
ment of Morphy test specifications and the uses of Morphy
in automated software testing. 2 These case studies are:

• Triangle Classification.

Triangle classification is a classic software testing problem
that Myer used to illustrate the importance of combination
of various types of test cases [20]. The program under test
“reads three integer values from an input dialog. The three
values represent the lengths of the sides of a triangle. The
program displays a message that states whether the triangle
is scalene, isosceles, or equilateral.” [20] Myer listed 14
questions for testers to assess the adequacy of a test and
reported that, for such a seemly simple program, “highly
qualified professional programmers score, on the average,
only 7.8 out of a possible 14”.

The case study demonstrated that datamorphisms can be
easily developed to achieve test adequacy and the testing
process can be automated. A set of 20 datamorphisms were
developed inspired by Myer’s test criteria. When the first

2The source code of the case studies can be found on GitHub at the
URL: https://github.com/hongzhu6129/MorphyExamples.git
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order mutant complete strategy is applied to these datamor-
phisms on 4 seed test cases, 80 mutant test cases are gen-
erated automatically, which fully meet Myer’s test criteria.
Moreover, for each datamorphism, we also developed a cor-
responding metamorphism to check the correctness of the
program under test. Four different programs were tested:
two are incorrect and two are correct but using different al-
gorithms. The testing successfully detected the bugs in the
faulty programs, while the correct ones passed the test. The
test specifications were split into two classes, thus test mor-
phisms were reused; see Figure 5.

The test executions of the program under test can be easily defined by a test executer morphism. For 
example, the following is such a test executer morphism, where Triangle1 is a class that implements 
triangle classification.  
package morphy.examples; 
import morphy.annotations.*; 
public class TriangleTest1 extends TriangleTestSpec {  
 @TestExecuter 
 public TriangleType TriangleClassifier1(Triangle tc) { 
  Triangle1 x = new Triangle1(tc.x, tc.y, tc.z);  
  return x.Classify(); 
 } 
} 

Note that, in this case study, we have put the test executer method in a separate class that inherits the test 
specifications for triangle classifications. Therefore, the test specification class can be reused to test a number of 
different implementations, or versions, of the program even if their interface is different. In the case study, we 
implemented two different algorithms for triangle classification, and for each of them, we made two versions, one 
with error and one is correct. The structure of the test specifications is depicted in Figure 1.  

 

 

 

 

 

Figure 11. Relationship between the Classes in Case Study 1.  

F. Analysis of Test Results.  

The analysis of the results of testing on a test suite can be performed by invoking an analysis morphism. The 
following is such an example that calculate the statistics of test results and report to the user in a popup.  

 @Analyser 
 public void statistics() { 
  int numTC = testSuite.testSet.size(); 
  int numOriginalTC = 0; 
  int numMutantTC = 0; 
  int numCheckedTC =0; 
  int numCorrect =0; 
  int numError=0; 
  for (TestCase x : testSuite.testSet) { 
   if (x.feature == TestDataFeature.original) {  
    numOriginalTC++; 
   }else { 
    numMutantTC++; 
   }; 
   if (!x.correctness.equals(null)) { 
    String correctness = x.correctness; 
    if (correctness.equals("")) continue;  
    numCheckedTC++; 
    String[] correctnessRecords = correctness.split(";"); 
    for (String record: correctnessRecords) { 
     String[] keyValuePair= record.split("="); 
     if (keyValuePair[1].equals("pass")){ 
      numCorrect++; 
     } else {  
      numError++; 
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Figure 5. Structure of Test Specification

• Trigonometric Functions.

Three trigonometric functions sin(x), cos(x) and tan(x)
provided by Java Math library are tested. The correctness of
the library’s implementation of these functions are checked
against a set of 27 trigonometric identities implemented as
metamorphisms; see Table 2.

Two seed makers were written: one generates a set of 17
special values between 0 and 2π; the other generates 100
random test cases in the range between 0 and π

2 .
Unary datamorphisms were written for the mappings

from x to 2π ± x, π ± x, π
2 ± x, −x, and binary data-

morphisms from x and y to x± y, and x+y
2 .

The first order mutant complete and the combination
complete test sets were generated using Morphy testing
tool. The testing revealed an error rate of 0.957%, which
are on test cases that the inputs to tan(x) are not defined, or
very close to undefined.

• Face Recognition.

The experiments with face recognition reported in [30, 31]
are repeated, but the test code is re-written in the form of
Morphy test specifications. The case study clearly demon-
strated the benefit of test automation and the reusability of
test code achieved by Morphy. The test data for testing a
face recognition application are images of sizes more than
100 KB. In [30, 31, 19], 200 images of different persons
were used and each generated 13 mutants using AttGAN
[13] to alter the facial features. In the case study, each mu-
tant image was only generated once and stored in the file
system, then it was reused to test different face recognition
applications rather than generated many times.

Table 2. List of Metamorphisms
sin(π − x) = sin(x) sin(π + x) = −sin(x)
cos(π − x) = −cos(x) cos(π + x) = −cos(x)
tan(π − x) = −tan(x) tan(π + x) = tan(x)
sin(π/2 + x) = cos(x) sin(π/2− x) = cos(x)
cos(π/2 + x) = −sin(x) cos(π/2− x) = sin(x)
tan(π/2 + x) = −1/tan(x) tan(π/2− x) = 1/tan(x)
sin(2π − x) = −sin(x) sin(2π + x) = sin(x)
cos(2π − x) = cos(x) cos(2π + x) = cos(x)
tan(2π − x) = −tan(x) tan(2π + x) = tan(x)
sin(−x) = −sin(x) cos(−x) = cos(x)

tan(−x) = −tan(x)
sin(x+ y) = sin(x)cos(y) + cos(x)sin(y)
cos(x+ y) = cos(x)cos(y)− sin(x)sin(y)
sin(x− y) = sin(x)cos(y)− cos(x)sin(y)
cos(x− y) = cos(x)cos(y) + sin(x)sin(y)
tan(x+ y) = (tan(x) + tan(y))/(1− tan(x)tan(y))
tan(x− y) = (tan(x)− tan(y))/(1 + tan(x)tan(y))

In addition to repeating the previous experiments, which
examines whether a face recognition application recognises
a person from a mutant image, a new experiment was de-
signed to examine whether a face recognition application
rejects a mutant images of a different person. The new
experiment is implemented by writing just one new seed
maker. All other test morphisms are reuses of the existing
ones. The test specifications are split into three classes: one
for datamorphisms and analysers, one for seed makers and
one for test executer. This is in the similar structure to the
test specifications for Triangle Classification.

Test scripts were recorded and slightly edited to add code
for repeating tests for a number of times in order to obtain
statistically significant data. A test analyser method was
also written to do statistical analysis of the experiment data.
The test process was highly automated and repeatable.

Table 3. Summary of Case Studies
TC Trg FR

Num of Classes 11 4 8
Total LOC 899 830 450
Num of Seed Makers 4 3 3
Average LOC of Seed Makers 26.25 61.67 21.33
Num of Datamorphisms 20 10 13
Average LOC of Datamorphisms 9 6 8
Num of Metamorphisms 25 30 –
Average LOC of Metamorphisms 8.72 7.00 –
Num of Analysers 2 2 2
Average LOC of Analysers 62 33 41

The following observations were made on the case stud-
ies. First, test morphisms in the case studies are simple and
easy to write; see Table 3, where TC stands for Triangle
Classification, Trg for Trigonometric Function, and FR for
Face Recognition. LOC is the lines of code.
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Second, test specifications are reusable especially when
they are properly structured. In the case study, test spec-
ifications are decomposed into a number of classes where
common test morphisms are placed together. They are in-
herited by classes that contain test specific morphisms.

Third, achieving test automation using facilities at three
different levels of activity, strategy and process is flexible
and practical. Different testing techniques can be easily in-
tegrated into Morphy and used together.

6. Conclusion

6.1. Main Contributions

The main contributions of the paper are three folds. First,
this paper redefines datamorphic testing method by classi-
fying test artefacts into test entities and morphisms. Data-
morphisms, metamorphisms and seed makers are examples
of test morphisms. We have also identified a set of other test
morphisms, which include test case metrics and filters, test
set metrics and filters, test executers and analysers. The case
studies reported in this paper have clearly demonstrated the
importance of the test morphisms of test executers and anal-
ysers. The other types of test morphisms also play crucial
roles in the implementation of test strategies, which will be
reported in separate papers.

Second, the paper proposes a novel framework of test
automation and demonstrates its feasibility by a test au-
tomation tool called Morphy. In this framework, testing
activities can be automated by writing test codes for vari-
ous test morphisms and invoking them through a test tool
like Morphy. Advanced combinations of test morphisms
can be realised by test strategies to achieve a higher level
of test automation. Three types of test strategies have been
implemented in Morphy: (a) Datamorphism combination
strategies generate test sets of various coverage of datamor-
phism combinations; (b) Exploration strategies explore the
test space in order to find the borders between subdomains
for testing classification and clustering type of AI applica-
tions; (c) Test set optimisation strategies employ genetic al-
gorithms to optimise test sets. This paper focuses on data-
morphism combination strategies. They are formally de-
fined and their implementation algorithms are presented.
Their uses are demonstrated by case studies. The other
types of test strategies will be reported separately. Morphy
also provides a test scripting facility to further improve test
automation especially for regression testing. Test scripts
can be recorded from the interactive invocations of test mor-
phisms for basic test activities and invocations of test strate-
gies as well as test management activities such as loading
test specifications, loading and saving test sets, etc. The
case studies reported in this paper used test scripts to im-
prove test automation. A more detailed study of the test

script facility will be reported in a separate paper.
Third, the paper reports three case studies with datamor-

phic testing method and the automated testing tool Morphy.
The case studies demonstrated the practical usability of the
method and the tool. In particular, Morphy is applicable to
all kinds of software systems including AI applications.

6.2. Related Work

There are two kinds of test automation frameworks: XU-
nit [11, 18] like JUnit and GUI based test automation tools
like Selenium [23] and WebDriver [26]. In compariosn with
them, Morphy provides more advanced test automation fa-
cilities such as test strategies.

In XUnit framework test is defined by a set of methods
in a class or a set of test scripts for executing the program
under test together with methods for setting up the envi-
ronment before test executions and tearing down the en-
vironment after test. Such a test specification is impera-
tive. Our test specifications are declaratively imperative in
the sense that each test class declares various testing mor-
phisms while each test morphism is coded in an imperative
programming language. Our case studies show that such
test specifications are highly reusable and composible even
for testing different applications. This is what existing test
automation frameworks have not achieved.

GUI based test automation tools employs test scripts or
test code to interact with GUI elements. The most rep-
resentative and most well-known example of such testing
tools is Selenium [23]. It has two test environments: (a)
the Selenium IDE in which manual testing can be recorded
into test scripts and replayed; (b) the Web Drivers, which
provided an API for writing test code in programming lan-
guages. Morphy also employs test scripts, but it is equipped
with more advanced test automation facilities such as test
strategies, thus it achieves a higher level of test automation.

An advantage of Morphy is that the architecture enables
various testing techniques and tools to be integrated by
wrapping exiting testing tools as methods in a test specifi-
cation to invoke the tools. For example, test case generation
techniques and tools [1] like fuzz testing [25], data mutation
testing [22], random testing [2], adaptive random testing
[8, 17], combinatorial testing [21] and model based test case
generators are all test morphisms, which can be wrapped
as seed makers or datamorphisms. Metamorphic relations
in metamorphic testing [7] and formal specification-based
test oracles [4, 5, 6, 28, 15, 16] are metamorphisms. Test
coverage measurement tools like [24] are test set metrics.
Regression testing techniques and methods [27] that select
or prioritise test cases in an existing test set can be imple-
mented as test set filters. Search-based testing [12, 9] can be
regarded as test strategies. Therefore, they can all be easily
integrated into Morphy.
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6.3. Future Work

It is worth noting that datamorphic testing focuses on
test morphisms related to test data and test sets, as its name
implies. There are other types of test morphisms. For ex-
ample, mutation operators in mutation testing [14] and fault
injection tools for fault-based testing methods are test mor-
phisms that are mappings from programs to programs or
to sets of programs. Specification mutation operators are
test morphisms that mapping from formal specifications to
specifications, or to sets of specifications. It is an inter-
esting further research question how to integrate such test
morphisms into the datamorphic testing tools like Morphy,
although, theoretically speaking, there should be no signifi-
cant difficulty to do so.

It is also possible to integrate XUnit like JUnit and GUI
based test automation tools like WebDriver with Morphy.
This is also an interesting topic for future work.

We have already conducted some experiments with the
exploration strategies and test set optimisation strategies.
The results will be reported in separate papers.
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