
A mean-field homogenisation scheme with CZM-based
interfaces describing progressive inclusions debonding

Timothée Gentieua,c, Anita Catapanob,∗, Julien Jumela, James Broughtonc
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Abstract

The objective of the present study is to describe the progressive debonding
of inclusions in particle or fibre reinforced composites. To do so, the mean-
field homogenisation scheme of Mori-Tanaka is enriched to take into account
imperfect interfaces. The interfaces are modelled by a bilinear Cohesive Zone
Model (CZM) taking into account normal and tangential effects. Results
obtained with this new mean-field homogenisation scheme are compared to
2D FE-based numerical simulations that are used as reference results. The
effects of inclusions volume fraction and size are also observed.

Keywords: Particle-reinforced composites, Homogenisation, Cohesive zone
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1. Introduction

Reinforced composites are commonly used in various industries such as
automotive, aeronautics, or aerospace. The matrix can be reinforced with
particles or fibres to satisfy numerous requirements in terms of mechanical
properties. The resulting mechanical properties depend on the components
properties, the size and shape of the inclusions, and the adhesion between
the inclusions and the matrix [1–3]. For the purpose of the design process,
simple laws describing the material behaviour are preferred because they can
easily be implemented in large scale structures. Mean-field homogenisation
techniques are then a good way to describe the material behaviour. In the
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present study, only the Mori-Tanaka homogenisation scheme [4], [5] is con-
sidered but multiple schemes with different levels of sophistication have been
developed in the literature (e.g. self-consistent scheme [6], [7], differential
scheme [8], Lielens [9], etc.).

In order to develop more realistic analytical models some researchers
attempted to take into account non-linear effects such as the debonding
between the inclusions and the matrix [10] within the framework of ho-
mogenisation schemes. This type of model was notably developed for high
explosive materials to predict the decohesion between energetic particles in a
polymeric binder matrix. They first determined the mechanical properties of
particles/matrix interfaces based on a bilinear Cohesive Zone Model (CZM)
approach [11]. Then, the cohesive behaviour of interfaces was introduced
into High-Dilute and Mori-Tanaka homogenisation schemes under hydro-
static loading conditions [12] and uniaxial loading [13]. Comparisons with
numerical results showed good correlation between numerical and analytical
models especially concerning the evaluation of particle volume fraction and
size effects on particle debonding [14].

In the present work, a new mean-field homogenisation scheme is pre-
sented. This model is an improved version of the Mori-Tanaka model which
is enriched to take into account imperfect interfaces through the introduction
of a CZM. The main novelty of the present method concerns the integration
of the evolution of the compliance of the interface through a convergence
loop based on a CZM law. In order to prove the effectiveness of the pro-
posed model, results are compared with those obtained from a FE-based
analysis. This comparison let assess the effects of morphological parameters
of the composite material (volume fraction and size of the inclusions) that
gives valuable information on the behaviour of reinforced composites. The
paper is organised as follows: Section 2 focuses on the description of im-
perfect interfaces in the framework of mean-field homogenisation schemes,
Section 3 presents the Mori-Tanaka model with weakened interfaces, Section
4 introduces the theory of CZMs whilst Section 5 describes the new Mori-
Tanaka model combined with CZMs for describing the imperfect interfaces.
Numerical results are presented in Section 6 and Section 7 ends the paper
with some concluding remarks.

2. Analytical modelling of linear spring-type imperfect interfaces

In this study of the homogenisation of particle reinforced composites, an
imperfect elastic bonding between the inclusions and the matrix is consid-
ered. Following the concept developed by Qu in [15] and [16], the imperfect
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interfaces between two phases can be modelled by introducing an infinitely
thin layer in which transferred stresses remain continuous and displacements
become discontinuous (see Fig. 1). S is used to denote the surface of the
interface and ~n its outward normal vector. S+ represents the interface when
approaching it from outside the inclusion and S− when approaching it from
inside the inclusion. The stress at the interface being continuous, normal
stress jump ∆σ between the phases is null:

∆σijnj =
[
σij
(
S+
)
− σij

(
S−)]nj = 0 (1)

The displacement jump ∆u is here modelled with a linear spring:

∆ui =
[
ui
(
S+
)
− ui

(
S−)] = ηijσjknk (2)

The second order tensor ηij represents the compliance of the spring/layer
interface. It is assumed to be symmetric and definite positive. One can
recognise a perfect interface when ηij is set to zero whereas ηij →∞ implies
a complete debond. Two parameters α and β are introduced to model the
interface compliance respectively in the tangential and normal direction of
the interface (see Fig. 1). The interface compliance tensor is given by the
relationship:

ηij = αδij + (β − α)ninj (3)

where α and β represent the tangential and normal compliances of the in-
terface, and δ the Kronecker symbol. Therefore, the tangential and normal
displacement jump can be expressed as follows:

∆ui (δik − nink) = ασijnj (δik − nink) (4)

∆uini = βσijnjni (5)

Considering Eqs. 4-5, a new relationship between the perturbation strain
field ε

∼
d in the inclusion and the eigenstrain ε

∼
∗ can be established:

εdij(x) = SEshijkl ε
∗
kl − Cklmn

∫
S

∆uk(ξ)Gijmn(ξ − x)nl dS(ξ), (6)

where G
≈

is the Green function, S
≈
Esh is the inclusion Eshelby tensor, and

C
≈

is the stiffness tensor of the matrix.

It is possible to determine a fourth-order tensor that relates the pertur-
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bation strain to the eigenstrain: the modified Eshelby tensor S
≈
EshM . With

the introduction of a compliant interface, the eigenstrain is not homogeneous
in the inclusion any more. To overcome this difficulty, [16] calculated a vol-
ume averaged modified Eshelby tensor by integrating the modified Eshelby
tensor over the inclusion volume. [16] determined an exact solution of the
problem by permutating the derivation and first integral operations of Eq. 6
and then permuting the surface and volume integrals of the same equation.
However, Othmani et al [17] noticed that this is not a mathematically correct
operation as, according to Fubini’s theorem, such permutations are only al-
lowed when the integration volume is free from any singularity (which is not
the case here as Green’s function is singular along the imperfect interface).

To perform the calculation of the volume averaged modified Eshelby
tensor, [17] got rid of Green’s function singularity by translating the calcu-
lations in Fourier space. Othmani obtained the following expression of the
modified Eshelby tensor (for convenience, here below the volume averaged
will be omitted):

S
≈
EshM =

[
I
≈

+ 〈Γ
≈
〉
Ω

]−1

:

[
S
≈
Esh + 〈Γ

≈
〉
Ω

]
, (7)

while Qu has the following one:

S
≈
EshM = S

≈
Esh + 〈Γ

≈
〉
Ω

:
(
I
≈
− S

≈
Esh

)
. (8)

For both Eqs. 7-8, the tensor 〈Γ
≈
〉
Ω

is expressed as:

〈Γ
≈
〉
Ω

=
(
I
≈
− S

≈
Esh

)
: H

≈
: C
≈m, (9)

with Hijkl =
1

Ω

∫
S

(ηiknjnl + ηjkninl + ηilnjnk + ηjlnink) dS, (10)

whereH
≈

is a fourth-order tensor representing the influence of both the inter-

face compliance and the morphology of the inclusion. Analytical expressions
of this tensor are given by Qu for specific cases where the shape of the in-
clusions enables the calculation of the integrals analytically. Othmani [17]
claimed that the derivation of this tensor was also wrong in [16], however
a comparison of the expressions given by both in the case of a spherical
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particle reveals the same result. H
≈

can always be decomposed as follows:

H
≈

= αP
≈

+ (β − α)Q
≈
. (11)

For specific inclusion geometries, the expressions of P
≈

and Q
≈

can be

analytically determined. For a spherical particle of radius a, one gets:

Pijkl =
1

a
Iijkl (12)

Qijkl =
1

5a
(2Iijkl + δijδkl) (13)

For the case of a cylindrical inclusion of radius a, (based on [18]) one can
obtain the following expressions:

P1111 = P2222 = 4P2323 = 4P1313 = 2P1212 =
1

a
, (14)

Q1111 = Q2222 = 3Q1122 = 3Q2211 = 3Q1212 =
3

4a
, (15)

Pijkl = Qijkl = 0,with i, j, k, l = 1, 2, 3. (16)

The strain localisation tensors obtained by Qu and Othmani are also
different. Othmani obtained (and was confirmed by [18]):

A
≈

HD
i =

[
I
≈
− S

≈
EshM :

(
I
≈
−C

≈m
−1 : C

≈ i

)]−1
:

[
I
≈

+ 〈Γ
≈
〉
Ω

]−1

, (17)

while Qu reported:

A
≈

HD
i =

[
I
≈
− S

≈
EshM :

(
I
≈
−C

≈m
−1 : C

≈ i

)]−1
. (18)

In the present work, to check the correction applied to the modified
Eshelby tensor and the strain localisation tensor, the strain in an inclusion
subjected to a remote hydrostatic loading is numerically determined and
compared to the analytical prediction from Qu [16] and from the corrected
expressions [17] and [18]. A compliant interface is introduced between the
inclusion and the matrix (α = β = 4 × 10−5 mm/MPa). Two types of
inclusions are used: a spherical particle of radius a = 100 µm and a cylinder
of radius a = 100 µm. The size of the unit cell is L = 20×a so that boundary
effects can be neglected. The calculations are made under axisymmetric and
plane strain assumptions respectively for spherical and cylinder inclusion.

5



Fig. 2 represents the strain in the inclusion (homogeneous because of
the hydrostatic applied loading) against the global strain of the material.
In both cases, the corrected expressions almost give a perfect match with
the numerical simulations while the results obtained with the expressions
of Qu diverge. This test validates the corrected expressions of the modified
Eshelby tensor and the strain localisation tensor.

3. Mori-Tanaka model with weakened interfaces

Exploiting the theory presented in Section 2, a single inclusion is consid-
ered within an infinite matrix (so that the interactions between the inclu-
sions are completely neglected). The typical relationship of the mean-field
homogenisation scheme to get the effective stiffness tensor Ceff , of a com-
posite material made of m+ 1 phases, is:

C
≈eff =

m∑
r=0

φrA≈r : C
≈r, (19)

where Ar and Cr are, respectively, the fourth order tensors of strain local-
isation and stiffness. φr is the phase volume fraction while the phase r=0
corresponds to the matrix material.

Mori and Tanaka [4] tried to take into account the effect of the inclusions
interactions. For multiphasic materials, the Mori-Tanaka scheme can be
generalised as follows:

A
≈

MT
r = A

≈
HD
r :

(
n∑
r=0

φrA≈
HD
r

)−1

(20)

C
≈eff =

n∑
r=0

φrA≈
MT
r : C

≈r (21)

where Eq. 20 represents the strain localisation tensor of the inclusion be-
longing to the rth phase and Eq. 21 represents the effective stiffness tensor
of the composite.

The mean-field homogenisation was revisited by Benveniste [5]. Accord-
ing to [5], the effect of the interaction between the particles can be modelled
by replacing the remote loading by the strain inside the matrix phase. The
strain localisation tensor of an inclusion becomes:

A
≈

MT
i = A

≈
HD
i :

(
(1− φ) : A

≈
HD
m + φA

≈
HD
i

)−1
(22)
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Benveniste [5] demonstrated that the symmetry of the stiffness tensor is
no longer certified when:

• more than two phases are taken into account;

• non-aligned ellipsoidal inclusions are considered.

Moreover, the Mori-Tanaka scheme give good results for low to moderate
volume fraction of inclusions because interactions between inclusions are not
properly described. However, thanks to the explicit formulation, it can be
easily and quickly implemented and adapted to the specific volume fraction
of the composited to be analysed.

The mean-field homogenisation scheme can be further improved using
the modified Eshelby tensor to obtain the macroscopic behaviour of a com-
posite material containing inclusions with imperfect interfaces. Esteva and
Spanos [19] determined the effective elastic properties of nanotube reinforced
composites with slightly weakened interfaces using a modified Mori-Tanaka
scheme described thereafter. Lee and Pyo [20] used this approach to describe
the evolution of the macroscopic behaviour with spherical particles consid-
ering that the progressive debonding could be represented with a reduction
of interface stiffness.

Qu re-derived the Mori-Tanaka formulae with imperfect interfaces [16].
According to this procedure, the imperfect interfaces contribute to the eval-
uation of the strain in two ways [16]. First, the imperfect interfaces affect ε

∼i
,

the average strain, by taking into account the inhomogeneous distribution
of strains. This effect can be taken into account by the use of the modified
Eshelby tensor. Secondly, the imperfect interfaces introduce a displacement
jump that induces another component ε

∼inter corresponding to the third

term of the decomposition of the global strain E:

E
∼

= (1− φ) ε
∼m

+ φε
∼i

+ φH
≈

: C
≈ i : ε

∼i
. (23)

The Mori-Tanaka strain localisation tensor for the phase i then becomes:

A
≈

MT
i = A

≈
HD
i :

(
(1− φ)A

≈
HD
m + φ

(
I
≈

+H
≈

: C
≈ i

)
: A
≈

HD
i

)−1
(24)

Thanks to this strain localisation tensor of Eq. (24) and the typical mean-
field homogenisation formula (19), an estimate of the effective stiffness tensor
can be obtained for a reinforced material with imperfect interfaces:

C
≈eff = (1− φ)A

≈
MT
m : C

≈m + φA
≈

MT
i : C

≈ i (25)
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4. Nonlinear interfaces based on a Cohesive Zone Model

A CZM is a zero thickness interface separation law where the stress vec-
tor at the interface is related to the displacement jump across the interface.
Multiple shapes of traction-separation law have been proposed in the litera-
ture and a bilinear law was used for this study (based on Alfano & Crisfield
work [21] and implemented in the commercial software Ansys). The bilin-
ear traction-separation law is represented on Fig. 3 and the corresponding
behaviour is defined by the following equations:


stage I: σint = ∆u kσ

stage II: σint =
(

1 + kσ̃
kσ

)
σmax − kσ̃ ∆u

stage III: σint = 0,

(26)

where kσ and kσ̃ are respectively the slopes of stage I and II of the traction-
separation law. Stage I of the curve shows a linear elastic behaviour until
ultimate stress is reached. Then, the cohesive stress at the interface linearly
decreases as the interface stiffness is irreversibly decreasing proportionally
to damage intensity. This cohesive law is governed by three main param-
eters: interface stiffness kσ, strength σc and toughness. The initial slope
is generally chosen according to numerical criteria. Indeed, the interface
stiffness influences the effective stiffness of the RVE. Then, sufficiently high
values are chosen so that the global elastic properties of the composite re-
main stable. The interface strength controls the damage initiation before a
linear softening of the stress occurs until the stress completely vanishes and
the interface is considered to be completely debonded. The whole elastic
loading and damage process is governed by the interface fracture energy Gc
which corresponds to the shaded area under the traction-separation curves.

For this study, only one set of parameter is employed, and is summarised
in Table 1, where the elastic properties of the matrix and the inclusions are
also gathered. The stiffness of the interface is set very high (equal to 2.5
106 MPa/mm) so that the global compliance of the material is unaffected
by that of the interfaces whatever the size of the inclusions.

5. Introduction of the CZM in the Mori-Tanaka homogenisation
scheme

The CZM traction-separation law is used to govern the evolution of the
compliance of the interfaces. At each iteration, a new tensor H

≈
is calculated.
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For both the cylindrical and spherical geometries of inclusions, it relies on
two parameters α and β. Those two parameters are always considered equal
for this study. They are computed at every iteration as the compliance of
the interface evolves as the inverse of the stiffness of the traction-separation
law.

The flowchart summarising the algorithm developed for the proposed
homogenisation model is represented in Fig. 4. During the first phase of the
loading, one obtains an elastic calculation with compliant interfaces. Then,
once the limit strength of the interface is reached, the interfaces are damaged
and their compliance increases according to the evolution of the CZM. To
numerically simulate this phase, a convergence loop is employed:

• a first value of the stress at the inclusion interface (σi) is calculated
using the value of the interface compliance at the previous step;

• the associated displacement of the interface is determined and a new
value of the inclusion stress based on the CZM (σi test) is computed,
as well as the associated compliance of the interface (βtest)

• βtest is selected as the new compliance of the interface and the conver-
gence loop is repeated until a convergence of the interface compliance
is reached (|β − βtest| < res).

During the third phase of the loading, the inclusions are considered to be
completely debonded (no stress transfer to the inclusions) and the inclusions
are replaced by voids with the same geometry.

The calculation of the modified Eshelby tensor is particularly adapted
to hydrostatic loading. To use the model under uniaxial axial tension, some
assumptions have to be made (according to the one made in [17]):

1. The eigenstrain in the inclusions is assumed to be uniform;

2. Only a hydrostatic debond of the inclusions is considered (the evolu-
tion of the interfacial damage is the same in every direction);

3. The modified Eshelby tensor is averaged over the whole inclusion.

This procedure is based on the work of [16] which integrates imperfect
elastic interfaces in the Mori-Tanaka homogenisation scheme. However, in
the present work, there are some fundamental differences and novelties which
concerns:
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• the integration of the correct version of the modified Eshelby tensor
developed in [17] (which is not been taken into account in [16]). In[18]
of the correct modified Eshelby tensor is considered only for 2D circular
particles ;

• the stiffness of the interface is governed by a CZM ([17] makes use of
the same approach but within the highly diluted inclusions homogeni-
sation scheme);

• the convergence loop used to catch the evolution of the stiffness of the
interface is explicitly described unlike [17] where the procedure is not
clearly exposed and can generate misunderstandings.

6. Comparisons with numerical results - Effect of morphological
parameters

In order to evaluate the effectiveness of the propose analytical homogeni-
sation model, the results have been compared with those of a 2D FE-based
one (under plane strain assumption). Random 2D RVE with circular in-
clusions are generated using the Dropping and Rolling algorithm developed
in [22]. The numerical implementation and Periodic Boundary Conditions
are described in [22]. The FE model presented in [22] is modified in the
present work by introducing Cohesive elements at all the interfaces between
the inclusions and the matrix to numerically simulate the debonding of the
particles from the matrix. Comparisons with numerical results are made for
two different loading cases (in-plane bi-axial loading and uniaxial tension)
to assess the capability of the model to be representative of the debonding
phenomenon in reinforced composites.

The strain tensor considered for the bi-axial loading is the following:

E
∼bi-axial

=

E 0 0
0 E 0
0 0 0

 , (27)

while for the uniaxial loading, it is:

E
∼uniaxial

=

E 0 0
0 0 0
0 0 0

 , (28)
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6.1. In plane bi-axial loading

The first loading case is the bi-axial one where equal displacements along
the two in-plane directions x and y are applied to the RVE. A RVE with
a 30% volume fraction φ of circular inclusions is selected (Fig. 5). All the
inclusions have the same size (R = 80 µm). The stress-strain curve along x-
direction, obtained using the FE model is represented with dots in Fig. 6 (a).
This curve represents the reference values to be met. This curve can be di-
vided into three parts. The first one corresponds to the elastic regime and
all the interfaces behaviour belongs to stage I of the traction-separation law,
Eq. 26. Then, inclusions start to debond and a global softening of the mate-
rial is observed. In the final part, all the inclusions are completely debonded
(no stress is redistributed to the inclusions) and one obtains another linear
behaviour.

The analytical homogenisation model, presented in Section 5, is then
employed and the resulting stress-strain curve is also plotted in red in
Fig. 6 (a). The same trends corresponding respectively to inclusions com-
pletely bonded, debonding, and completely debonded, are also observed
when using this model. Moreover, a good fit of the numerical results is
observed, especially during the first and last phase. While in the middle
part of the curve, i.e. during the debonding phase, only the very begin-
ning of the FE-based results are correctly fitted. Indeed, in this part of the
curve, a small load drop is observed with the numerical results whereas this
phenomenon is not captured by the analytical homogenisation model.

The stress-displacement values of the interface determined at each corre-
sponding point of the homogenisation model are plotted in Fig. 6 (b). One
can see that they are perfectly superimposed with the adopted traction-
separation law (continuous black line), confirming the good convergence of
the homogenisation model.

6.2. Uniaxial loading

The same RVE of Fig. 5 is employed to test the homogenisation model
under uniaxial loading along y-axis. The results from the semi-analytical
and the numerical models are represented in Fig. 7 (a). Similar to the bi-
axial, the behaviour of the material under uniaxial loading can be divided
into three parts (inclusions completely bonded, debonding, and completely
debonded) for both models. In the first part of the curve (elastic behaviour),
the results for both models are almost superimposed. Then, as inclusions
start to debond, the semi-analytical model seems to give a more compli-
ant response than the numerical model. However, the starting point of the
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debonding seems to be accurate. For the last phase (i.e. inclusion com-
pletely debonded), different slopes are observed for the semi-analytical and
numerical models. They, nethertheless, roughly show the same qualitative
behaviour. This can be explained by the fact that under uniaxial loading,
when the inclusions are replaced by voids, these finally tend to collapse un-
der the imposed loading. This behaviour is not representative of reality as
the presence of the inclusion avoids this squashing effect. With the numer-
ical model, inclusions are not completely debonded (at the equator) and a
compressive stress is redistributed to the inclusions by Poisson’s effect.

The stress-displacement point of the inclusion interfaces corresponding
to the evolution of the loading are plotted in Fig. 7 (b). Once agin, similar
to the bi-axial loading, a good match between the stress-strain homogenised
curve given by the analytical model and the imposed traction-separation law
is observed.

6.3. Parametric study: effect of inclusion volume fraction and size

In order to test the homogenisation model under multiple configurations,
the effect of inclusion volume fraction is first evaluated and compared to
numerical results. Concerning the FE models, RVEs with different inclusion
volume fractions (20% to 60%) are generated using the same procedure as
described in the previous subsections. All the inclusions are represented by
circles of a 80 µm radius. The RVE obtained are depicted in Fig. 8.

The RVE are first loaded under bi-axial conditions. The obtained stress-
strain curves are plotted in Fig. 9 (a). It is observed that the homogenised
stiffness increases with inclusion volume fraction. In particular, the linear
elastic parts of the curves are correctly estimated as there is very good
agreement between the semi-analytical and numerical results. Both models
then predict larger and more sudden load drops with increasing inclusion
volume fraction. The semi-analytical and the numerical models especially
show a good match to the results for low to moderate inclusion volume
fractions (40% and below).

The same RVE (φ = 30%) but expanded in a homothetic manner is
used to observe the effect of inclusion size. The results for both models
are represented in Fig. 9 (b). The linear elastic part and the beginning
of debonding region of the curve seem not be affected by the variation of
the inclusion size (as the initial stiffness of the interface, the first slope of
the CZM, was chosen very large compared the stiffnesses of the phases).
However, the RVE with the largest particles show a more sudden load drop.
The same observations were made in [14]. The last phase of the loading
(completely debonded particles) is reached much faster when using large
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particles compared with small ones. This strong particle size effect is also
described in [23], which states that large particles tend to debond prior to
smaller ones. The size effect is especially generated by the CZM in both
the analytical and the numerical models as it introduces a length parameter
in the problem. Indeed, the critical displacement uc, characteristic of the
CZM, is homogeneous to a length. It is also to be noted that the size of the
inclusion intervenes in the calculation of the H

≈
tensor for the determination

of the modified Eshelby tensor S
≈
EshM .

The results for the inclusion volume fraction and size effects under uniax-
ial loading are represented in Fig. 10 (a) and (b) respectively. Similar to the
bi-axial loading, good agreements are found between the semi-analytical and
numerical results. Once again, the fit of the two models is the best at low
to moderate inclusion volume fractions. Also under this loading condition,
large particles debond prior to smaller ones.

7. Conclusion

A new semi-analytical homogenisation model based on a Mori-Tanaka
homogenisation scheme, containing inclusions with imperfect interfaces, was
developed through this study. To describe the progressive debonding of the
reinforcements, the compliance of the inclusion interfaces evolves according
to a bilinear traction-separation law, similar to that of a CZM.

The model is applicable to any type of inclusion geometry as long as
its modified Eshelby tensor can be determined. This improved version of
the homogenisation models presented in [16] and [17] led to better predic-
tions of the influence of the imperfect interface behaviour on the resulting
homogenised composite. Moreover, unlike the approaches of [16] and [17],
this new model is able to simulate the debonding phase within an analyt-
ical homogenisation scheme. The results obtained with the present model
were compared to that of numerical FE simulations based on 2D RVE under
plane strain assumptions. The debonding was simulated using CZM. The
same CZM parameters were attributed to both models so that no calibration
of the semi-analytical model was required. Bi-axial and uniaxial loadings
were tested. Given the debonding of the inclusions was considered to be
hydrostatic, excellent agreements were found between the semi-analytical
and numerical results under hydrostatic loading. Under bi-axial loading,
the stress seemed to be slightly underestimated by the semi-analytical ho-
mogenisation model compared to that of the numerical one.
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The effects of inclusion volume fraction and inclusion size were also
tested. Similar trends were observed for both models:

• the volume fraction of particles stiffens the composite during the elastic
loading but a higher load drop is observed as the particles start to
debond. The effect of particle volume fraction on the debonding onset
was not found to be a first order phenomenon;

• An important size effect is visible when debonding occured for large
particles (large particles are debonded prior to smaller ones in accor-
dance with the results of the literature [24] and [23]).

The proposed model could also be applied to a material containing in-
clusions of multiple sizes by considering the inclusions of different sizes as
different phases. Accordingly, more slope changes would be observed when
a greater number of inclusion populations are introduced. A continuous dis-
tribution of particles would then be required in order to obtain a smooth
evolution of the homogenised stress-strain curves.
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Tables

E [GPa] ν [ ] σmax [MPa] Gc [J.m−2]

Particle 450 0.2 × ×
Matrix 3 0.3 × ×

Interface × × 50 100

Table 1: Mechanical properties of the materials
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Figures
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Figure 1: Imperfect interface modelled by a linear spring
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Figure 2: Strain concentration in the inclusion with (a) a spherical inclusion and (b) a
cylindrical one.
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Stage I
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Stage III

Figure 3: Bilinear traction-separation law.
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Figure 4: Flowchart of the proposed homogenisation model
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Figure 5: RVE obtained with the Dropping and Rolling algorithm (φ = 30%, R = 80 µm).
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Figure 6: (a) Homogenised stress-strain curves from the numerical and semi-analytical
models under bi-axial loading;
(b) Associated stress-displacement curve obtained at the interface of the inclu-
sion.
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Figure 7: (a) Homogenised stress-strain curves from the numerical and semi-analytical
models under uniaxial loading;
(b) Associated stress-displacement curve obtained at the interface of the inclu-
sion.
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Figure 8: Microstructures obtained from the Dropping and Rolling algorithm [22].
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Figure 9: Homogenisedtress-strain curves from the numerical (dotted lines) and semi-
analytical models under bi-axial loading, (a) effect of inclusion volume fraction,
(b) effect of inclusion size.
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Figure 10: Homogenisedtress-strain curves from the numerical (dotted lines) and semi-
analytical models under bi-axial loading, (a) effect of inclusion volume fraction,
(b) effect of inclusion size.
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