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Abstract: The increasing number of electric vehicles (EVs) on the roads has led to a rise in the

number of batteries reaching the end of their first life. Such batteries, however, still have a capacity

of 75–80% remaining, creating an opportunity for a second life in less power-intensive applications.

Utilising these second-life batteries (SLBs) requires specific preparation, including grading the

batteries based on their State of Health (SoH); repackaging, considering the end-use requirements;

and the development of an accurate battery-management system (BMS) based on validated theoretical

models. In this paper, we conduct a technical review of mathematical modelling and experimental

analyses of SLBs to address existing challenges in BMS development. Our review reveals that

most of the recent research focuses on environmental and economic aspects rather than technical

challenges. The review suggests the use of equivalent-circuit models with 2RCs and 3RCs, which

exhibit good accuracy for estimating the performance of lithium-ion batteries during their second

life. Furthermore, electrochemical impedance spectroscopy (EIS) tests provide valuable information

about the SLBs’ degradation history and conditions. For addressing calendar-ageing mechanisms,

electrochemical models are suggested over empirical models due to their effectiveness and efficiency.

Additionally, generating cycle-ageing test profiles based on real application scenarios using synthetic

load data is recommended for reliable predictions. Artificial intelligence algorithms show promise

in predicting SLB cycle-ageing fading parameters, offering significant time-saving benefits for lab

testing. Our study emphasises the importance of focusing on technical challenges to facilitate the

effective utilisation of SLBs in stationary applications, such as building energy-storage systems and

EV charging stations.

Keywords: electric vehicles; state of health; stationary applications; second life; battery-management system

1. Introduction

Lithium-ion batteries are one of the most promising technologies utilised in energy-
storage systems. They are manufactured in different capacities and chemistries to satisfy
the needs of various stationary and dynamic applications [1,2]. The increase in the num-
ber of lithium-ion batteries, due to the considerable uptake of EVs, has raised concerns
over their end-of-life treatments, which range from recycling to reusing and repurposing
strategies [3–5].

Recycling lithium-ion batteries remains challenging due to the variability in materials
that comprise its components, with each requiring specific recycling processes [6,7]. The
economic viability of recycling techniques and processes is also still being improved with
government initiatives and dedicated specialised resource allocations [8]. Huge up-scaled
infrastructure with significant investment is required in various geographical locations
for recycling the batteries at their end of life [9]. Manufacturers in Europe are becoming
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responsible for collecting and processing the batteries after they reach their end of life [7,10]
resulting in a potential increase in the cost of electric vehicles in the future [11,12]. An
increase in the number of EVs on the roads leads to a significant increment of the demand
for the lithium and other rare materials used in manufacturing batteries, resulting in an
increase in the battery-pack cost [13]. Since the battery-pack cost accounts for approximately
40% of the total cost of an EV, the total price of the EVs will rise in the future [13]. On the
other hand, the infrastructure for the recycling process of the batteries should be expanded
by the manufacturers to compensate for the mismatch between the recycling capacity and
the increasing capacity of the retired batteries from EVs, which also results in an increase in
the EVs’ cost [13].

Batteries from EVs are considered to be at their end of life when they reach 75–80%
of their nominal capacities [14]. Prolonging the batteries’ service life, given the significant
environmental impacts associated with their production, is crucial both in terms of resource
efficiency and meeting global net-zero targets [15–17]. Second-life batteries are being used
in various applications, such as in the building of energy-storage systems [18,19], EV
charging stations [16,20,21], and micro-grid-scale energy systems [22–24].

In order to use second-life batteries in different applications, the second-life modules
need to be disassembled from the vehicle, tested and graded for their SoH, and assembled
again in a new pack specifically designed for the new application [25]. Based on the results
of the study performed by Casals et al. [26,27], employment of second-life batteries in
building applications (integrated with solar systems) results in greater profit than from
first-life batteries among all potential applications for the technology. They also compared
the application of first- and second-life batteries in buildings in another study, as shown in
Figure 1 [28], and demonstrated that both scenarios are almost the same in terms of energy
performance and environmental impact. However, second-life batteries achieved lower
values in the studied environmental indicators, except for the abiotic depletion potential,
human toxicity cancer and non-cancer effect, and freshwater ecotoxicity [29].
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Figure 1. The employment of first- and second-life batteries in building applications studied by
Cusenza et al. [28]. (a) Whole life cycle of the battery considering the second-life usage and (b) life
cycle of the battery without considering the second-life usage.

The market demand for second-life batteries is heavily affected by their financial
benefit over brand-new batteries. Various studies demonstrated that the SLBs’ degradation
is one of the main factors affecting their overall cost [26,30,31]. Employment of second-life
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batteries in buildings equipped with renewable energy systems has been demonstrated to
result in a lower initial investment and also life-cycle emissions [32,33]. There, however,
exist several challenges to their full adoption. Mathews et al. [34] highlight that there is
still a lack of comprehensive technical assessment in the literature on second-life batteries
that is negatively affecting their commercialisation potential.

Bishnu Sanghai et al. [35] believes that governments should push the market through
new policies for launching a new market for second-life batteries. They also point out that
liability concerns envisaged for the SLBs, such as the lack of performance data from the
first life of the lithium-ion batteries and the economic uncertainties in upfront costs, are
some of the important challenges with this technology, all of which can be addressed by
the legislation of new policies. Existing performance standards for the certification process
are also lacking, which are required by the insurance industry to provide the guarantee for
these kinds of batteries to be sold on the market and installed in stationary energy-storage
systems. It is also mentioned by Li et al. [36] that there is still no global and regional policy
for developing the SLB market. For instance, the trigger for developing the SLB market in
Ontario, Canada, would be a reduction in the installation and maintenance costs associated
with SLBs; this can be achieved by the legislation of new policies by the government, which
would also lead to a decrease in the risk of blackouts. SLBs from different EVs might
have a different initial capacity or state of health (SOH), which is known as cell-to-cell
variation [37]. There is no standard for regrouping and reassembling such batteries for
secondary usage at the moment. The “SAE Standards for Battery secondary use J2997”
published by SAE International is being updated; however, there is no update yet available
on their website [38]. Drafts named IEC 63330 [39] and IEC 63338 [39] are being prepared
by the IEC committee on the “requirements for reuse of secondary batteries” and “the
reuse of secondary lithium and nickel metal-hydride cells and batteries after extraction
from the application they were first placed on the market with”, respectively. IEC 63330
focuses on safety evaluations of the EV retired batteries for second-life applications, and IEC
63338 introduces a guide on the safe and environment-oriented reuse of these batteries for
different purposes. In the meantime, the UL1974 standards [39] (Standard for Evaluation
for Repurposing Batteries) is being used in the US for certifying second-life batteries [39].

As can be seen in Figure 2, the number of scientific articles published on various
subjects related to SLBs have seen a significant increase in the last decade. The economic
analysis of second-life batteries forms the majority of the studies. In most of the studies with
a modelling focus, a simple second-life battery model is adopted to assess the economic
benefits of an installation with limited consideration of the technical aspects. The literature
also indicates that there are few studies performed on the experimental analysis of second-
life batteries, supporting the need to develop advanced mathematical models.
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Figure 2. Number of publications related to second-life batteries in various subjects from 2012 to
2022 [40].

Automotive manufacturers and battery manufacturers are expected to be responsible
for reusing or recycling the batteries at their end of life [41,42]. By increasing the number
of EVs and, consequently, incrementing the number of retired batteries, there is incentive
for manufacturers to create a second revenue stream from the batteries before recycling
them [43]. Multiple barriers to upscaling the use of SLBs, however, exist in the market.

One of the main barriers in repurposing retired lithium-ion batteries is the lack of
battery-management systems specifically designed for SLB packs. The majority of the
existing BMSs on the market are designed for first-life batteries. Adopting such BMSs
with second-life batteries, which have different degradation behaviour and characteristics
compared with first-life batteries, can cause potential safety issues (thermal runaways) in
addition to missing significant performance-optimisation opportunities. There are some
companies working on developing BMSs for second-life batteries [44,45]; however, the pro-
vided BMSs have not yet satisfied insurance-company requirements for providing insurance
for SLB packs being used in different applications, such as building energy-storage systems.
Developing a BMS specifically for SLB applications requires the development of a mathe-
matical model of the proposed SLBs and their characterisation using experimental tests.

This paper reviews the recent studies on the experimental analysis and the developed
mathematical models for SLBs followed by an overview of the testing protocols needed
for the characterisation and validation of the SLBs. These are introduced for cylindrical
and prismatic cells. The results of this study provide a roadmap for developing robust
mathematical models supporting the design of SLB-focused BMSs.

2. Battery Chemistry

The chemistry of lithium-ion batteries is defined based on their cathode material [46].
There are a large number of batteries with different chemistries available on the market
and installed in various electric vehicles. However, due to the restrictions of time for
performing experiments in the battery-testing lab, tests may be conducted on a limited
number of samples. Accordingly, a study was performed to assess the number of licensed
ultra-low-emission vehicles (ULEVs) on the road (Table 1) [47]. The UK government has
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published statistical data from monitoring the number of ULEVs on the roads in the UK.
This data have been downloaded and used to define the most common battery chemistry
used in ULEVs in the UK.

Table 1. The number of licensed ULEVs in the UK until 2021-Q2 [47].

Vehicle Model Proportion Cell Manufacturer Battery Chemistry Capacity

TESLA MODEL 3 46,952 PANASONIC LFP 80.5
NISSAN LEAF 40,462 Envision AESC NMC 40–62 kWh

BMW i3 13,054 SAMSUNG SDI NMC 33.77–42.2 kWh
KIA NIRO 12,900 SK Innovation NMC 67.5 kWh

RENAULT ZOE 18,111 LG Chem NMC 44.1–54.66 kWh
VOLKSWAGEN GOLF 7449 SAMSUNG SDI NMC 35.8 kWh

JAGUAR I-PACE 14,692 LG Chem NMC 90 kWh
AUDI E-TRON 10,422 LG Chem NMC 95 kWh

TESLA MODEL S 10,356 Panasonic NCA 102.4 kWh
VOLKSWAGEN ID3 9035 LG Chem NMC 55–62–82 kWh
HYUNDAI IONIQ 5217 LG Chem NMC 40.4 kWh

MG ZS 8558 CATL LFP 44.5 kWh
NISSAN E-NV200 1095 Envision AESC NMC 40 kWh

Based on the results presented in Table 1, the aggregated number of vehicles with
an NMC lithium-ion battery is significantly higher than the ones with an LFP battery
in the UK. Their total capacity is also higher, as can be seen in Figure 3a,b. In addition,
the industrial projects being carried out in Europe that are related to second-life batteries
are listed and shown in Table 2. In most of the projects, the prismatic lithium-ion NMC
second-life batteries are used. The majority of the SLBs are used for grid stabilization and
peak shaving in the performed projects within Europe.
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Figure 3. The (a) total number and (b) capacity of the licensed ULEVs in UK with various chemistries.

Table 2. The performed industrial projects related to second-life batteries in Europe [48].

Project Name Partners Location, Launch Capacity Chemistry Application

Battery 2nd life
BMW, Bosch Energy
Storage Solutions,
Vattenfall

Hamburg,
Germany, 2013

2.8 MWh NMC
Power station for
peak shaving

GUW+

ALSTOM ELPRO
Fraunhofer IVI M&P
Motion Control & Power
Electronics TU Dresden
ÜSTRA

Hannover,
Germany, 2019

500 kWh NMC
Energy-storage unit
for trams

Flexible fast charging
station VW Group
Components

VW
Wolfsburg,
Germany, 2020

NMC 100 kWh Fast-charging station

EUREF Campus
Audi, The Mobility
House, EUREF Campus

Berlin, Germany,
2019

NMC 1.9 MWh
Power station for
peak shaving,
co-generation plant

Amsterdam ArenA
Nissan, Eaton, The
Mobility House, BAM

Amsterdam,
Netherlands, 2018

NMC 2.8 MWh Back-up power

Anubis RWE, VDL Bus & Coach
Moerdijk,
Netherlands

Unknown 7.5 MWh
Grid stabilization,
peak shaving

Lünen
Daimler, Remondis,
GETEC, Mercedes–Benz
Energy

Lünen, Germany,
2016

NMC 13 MWh
Grid stabilization,
peak shaving

Pumped storage power
plant at Hengsteysee

RWE, Audi
Herdecke,
Germany, 2021

NMC 4.5 MWh
Pumped-storage
power plant

Smart Battery Storage
Renault, The Mobility
House, Fenecon

Elverlingsen,
Germany, 2020

NMC 3 MWh
Grid stabilization,
peak shaving

Elverlingsen
Daimler, GETEC
Energie, Mercedes–Benz
Energy

Elverlingsen,
Germany, 2018

NMC 21 MWh
Grid stabilization,
peak shaving

JT Energy Systems
Jungheinrich and
Triathlon

Freiberg (Saxony),
Germany, 2022

NMC 25 MWh NA
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Table 2. Cont.

Project Name Partners Location, Launch Capacity Chemistry Application

Smart Hubs

Renault, Connected
Energy, Moixa Passive
Systems, ICAX,
Newcastle University,
West Sussex County
Council, Innovate UK

West Sussex, UK,
2019

NMC 14.5 MWh
Grid stabilization,
peak shaving

Advanced Battery
Storage

Renault, The Mobility
House, Nidec

Douai, France,
2019

NMC 4.7 MWh
Grid stabilization,
peak shaving

EMILAS

Fraunhofer ISE, DSG
Energiekonzepte, Deer,
Beck Automation, VDE
Renewables

Weinsberg,
Germany, 2021

NMC 194 kWh
Charging stations in
apartment blocks

Fluxlicon
RWTH Aachen, PEM
Motion, ConAC,
DEKRA

Aachen, Germany,
2024

NMC 1 MWh
Municipal charging
infrastructure

EnBW-Heizkraftwerk Audi, EnBW
Heilbronn,
Germany, 2022

NMC 1 MW
Grid stabilization,
peak shaving

SecondLife
Batteries4Storage

AVL List, AVL DiTest,
Energie Steiermark,
Saubermacher, Smart
Power

Premstätten,
Austria, 2020

NMC 96 MWh
Grid stabilization,
peak shaving

Smart Fossil Free Island

Renault, Empresa
Electricidade da
Madeira, The Mobility
House, ABB

Porto Santo,
Portugal, 2018

NMC 132 kW
Vehicle-to-grid
system, grid
stabilization

Pioneer
Aeroporti di Roma, Enel
X, Fraunhofer ISE

Rome, Italy, 2024

Different
batteries with
different
chemistries

10 MWh
Grid stabilization,
peak shaving

Thermal Power Station
ENEL Group (Endesa),
Nissan, Loccioni

Melilla, Spain, 2019 NMC 1.7 MWh Grid stabilization

3. Mathematical Modelling

Mathematical models of lithium-ion batteries are utilised to estimate multiple param-
eters, including the battery voltage, state of charge, state of health, and temperature at
various levels (cell, module, and pack) [49–51]. In theory, it would be ideal to develop,
characterise, and validate the battery models at the cell level. Testing SLBs at the module
level neglects the cell-to-cell variations inside the module. This has been the basis of many
research publications [52,53], which could lead to inaccuracies in performance optimisa-
tions. However, as second-life batteries are already being sold at the module level on the
market [54], disassembling the battery modules to access the cells is not rational and would
impose additional costs to the repurposing process.

3.1. Modelling Techniques

Various methodologies are used in the literature for the mathematical modelling of
the batteries on different scales (cell, module, and pack). Physics-based models have been
demonstrated to require long computational processing times, hence making such models
undesirable, especially in relation to BMS programming [55]. However, simplified P2D
models are used often because of their quick computational processing time [56]. Adopting
reduced-order models, such as equivalent-circuit models (ECMs), are suggested as being
more desirable [57]. In addition, in most of the studies related to modelling the second-life
batteries, ECMs are chosen as the methodology for the modelling process. Therefore,
various types of equivalent-circuit models (ECMs) as well as a simplified P2D model are
explored and reviewed in this study.



Batteries 2024, 10, 79 8 of 40

3.1.1. Simplified P2D Model

The pseudo-two-dimensional (P2D) model uses partial differential equations to obtain
the physico-chemical parameters of the lithium-ion battery during operation [58]. Using this
method to model the retired batteries allows the determination of micro-health parameters,
offering a multi-dimensional categorisation foundation for these batteries that is used for
a detailed state-of-health estimation [37,58]. The computational complexity of the P2D
model is reduced by using a single-particle model, which converts it into a simplified P2D
model [58]. A schematic diagram of this model is shown in Figure 4. As shown in this
figure, the cell is separated into three zones: the negative electrode, the positive electrode,
and the separator [59]. In P2D models, there are five partial differential equations used to
reflect the electrochemical processes within the cell [59].

tt

ff ff

tt

 

ttVsimV௦௜௠ = OCV(SOC, T) − iR௦(SOC, T, i௦௜௠) − Vଵ(SOC, T, i) − Vଶ(SOC, T, i)𝑑V௡𝑑𝑡 = 1R௣௡Cௗ௡ V௡ + 1Cௗ௡ 𝑖𝜏௡ = R௣௡Cௗ௡

Figure 4. Schematic diagram of the P2D model [58].

3.1.2. Equivalent-Circuit Model

Equivalent-circuit models (ECMs) have been commonly used in most of the recent
studies, in which the mathematical model of the second-life batteries is presented. For
example, a second-order ECM model was used by Hart et al. [60], enabling them to consider
transient voltage (1RC) and long-term transient effects (e.g., relaxation effects) (2RC) in
their proposed model [61], which is shown in Figure 5. In that study, the resistance and
capacitance parameters were also obtained using electrochemical-impedance spectroscopy
(EIS) tests on the battery cells.

tt

ff ff

tt

 

ttVsimV௦௜௠ = OCV(SOC, T) − iR௦(SOC, T, i௦௜௠) − Vଵ(SOC, T, i) − Vଶ(SOC, T, i)𝑑V௡𝑑𝑡 = 1R௣௡Cௗ௡ V௡ + 1Cௗ௡ 𝑖𝜏௡ = R௣௡Cௗ௡

Figure 5. The second-order ECM used by Hart et al. [60].
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As shown in Figure 5, in the second-order ECM, the OCV, which represents the battery
SOC, can be ideally approximated by a voltage source. Rs accounts for the cell’s ohmic
resistance. The transient behaviour of the battery is described by the first parallel RC branch
(Rp1 and Cd1) and the second RC branch (Rp2 and Cd2). The calculation for the terminal
voltage (Vsim) follows the equations below [50]:

Vsim = OCV(SOC, T)− iRs(SOC, T, isim)− V1(SOC, T, i)− V2(SOC, T, i) (1)

dVn

dt
=

1
RpnCdn

Vn +
1

Cdn
i (2)

τn = RpnCdn (3)

where i, Cdn, Rpn, and τn represent the cell current, the nth polarization capacitance, the
nth polarization resistance, and the nth time constant, respectively [50].

An increment in RCs in the ECM results in higher accuracy while also increasing the
simulation time [62]. A first-order ECM is used by many other researchers due to its simple
mathematical structure and fast simulation time while providing acceptable accuracy
(approximately lower than 2% error) [52,62–64]. In a first-order ECM, the battery model
diagram includes a resistance (R0) connected in series to a resistance–capacitance network,
as shown in Figure 6 [63]. In this figure, the R0, RCT, and CDL represent the battery-cell
ohmic resistance, charge-transfer resistance, and double-layer capacitance, respectively. A
first-order ECM was also employed by Abdel-Monem et al. [62] to model two second-life
batteries with different geometries. They reported the maximum error of the first-order
ECM (also named as the Thevenin model or 1RC-ECM) as 1.5% and demonstrated that
their model provides accurate dynamic behaviour estimation for second-life batteries used
in a stationary energy-storage application.

𝑖 Cௗ௡  R௣௡ 𝜏௡

tt

tt

tt ff

tt

 

tt

ff tt
tt

tt
tt

tt

 

Figure 6. 1RC-ECM used by Uddin et al. [63].

In another study published by Locorotondo et al. [65], the electrical Randles-circuit
model, which is a type of ECM, was employed for the modelling of second-life batteries.
As demonstrated in Figure 7, this model consists of resistance and constant-phase elements
(CPEs) and different RCs. The employment of CPEs leads to better matching of EIS data
and the fitted parameters. Moreover, the CPE acts as a capacitor, and it contains two
parameters: capacitance and the depression factor. CPEs are conventionally employed
in ECM methodologies when the Nyquist diagrams coming from the EIS consist of semi-
elliptical arcs. Furthermore, the fitting error has been minimised using the Levenberg–
Marquardt algorithm (LMA) during the fitting procedure. More information about the
employment of EIS analysis for the modelling of second-life batteries can be found in [66].



Batteries 2024, 10, 79 10 of 40
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tt

tt

tt ff

tt

 

tt

ff tt
tt

tt
tt

tt

 
Figure 7. The ECM-type electrical Randles-circuit model used by Locorotondo et al. [65].

3.1.3. SoX Estimation Algorithms

One of the main features of a BMS is estimating the state of charge (SoC), health, and
temperature of the batteries [67]. Such battery parameters can be accurately estimated
by integrating different mathematical algorithms with characterised equivalent-circuit
models. These algorithms will modify the operational parameters of the batteries in
steady-state conditions according to the charge, temperature, and degradation state of
the modules [68–70]. The main parameters that will be affected by the degradation of the
batteries are the battery charge capacity, terminal resistance, and open-circuit voltage [71].

For estimating the cell temperature, Uddin et al. [63] integrated a bulk-thermal model
with 1RC-ECM as presented below:

mcp
d

dt
T(t) + hA(T(t)− Tamb) = I(V − OCV) (4)

where m, cp, h, A, and Tamb are the cell mass, cell heat capacity, convective heat transfer
coefficient from the cell to the environment, cell surface area, and ambient temperature,
respectively.

Others have coupled the extended Kalman filter (EKF) with the ECM model for the
prediction of the battery-cell SoC [64]. Tong et al. [64] compared the full-scale EKF and
worst-difference EKF, which are commonly employed for SoC estimation of the second-life
battery cells. The 1RC-ECM was integrated with the two EKF models to assess the accuracy
of SoC estimation by these methodologies, which demonstrated that the EKF model is
capable of estimating the SoC of the second-life battery cell with an error of below 4%.

To incorporate the ageing effects into the models developed for second-life batteries,
Assunção et al. [53] coupled a degradation model with a second-order ECM. In their work,
the battery packs were used in a PV-integrated energy system and discrete-calculus methods
were employed for solving the equations. Degradation models need to be employed in
such cases to reflect cycle- and calendar-ageing impacts, which require matrix estimations
and continuous calculus methodologies. Therefore, a degradation model developed by
Xu [72] was coupled to a second-order ECM for a more accurate estimation of the ageing
parameters. Furthermore, an ECM with four resistance–capacitance pairs was employed
by Casals et al. [73] for modelling the battery energy-storage system (Figure 8). They also
presented some empirical-based equations to reflect the cyclic-ageing and calendar-ageing
effects in the model (the algorithm used is shown in Figure 9).
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Figure 8. The ECM-4RC used by Casals et al. [73].
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Figure 9. The methodology used by Casals et al. [73] for considering ageing effects in the developed ECM.

The SoH analysis and diagnosis of the battery cells can be categorised into two groups;
destructive and non-destructive tests for the determination of battery SoH and degradation
analysis [74]. In destructive tests, the battery cell is analysed in terms of the active material
and electrolyte degradation [74]. However, this is a very expensive and time-consuming
methodology for SoH determination [74]. The most common non-destructive methods
for the health assessment of lithium-ion batteries include electrochemical impedance spec-
troscopy (EIS), X-ray computed tomography (XCT), and ultrasonic testing (UT), which pro-
vide accurate estimations of the simultaneous SOC, SOH, and temperature parameters [75].
As an alternative efficient method for SoH estimation of the batteries and determination of
the chemical and physical health of the cells, the electrochemical-impedance spectroscopy
(EIS) method is recommended by most of the recent research [74,76–78]. In this method, the
perturbing signal is injected by supplier into the battery cell, and the current and response
voltage of the cell is sampled for calculating the impedance [78]. Locorotondo et al. [65]
conducted a study on the degradation parametrisation and analysis of second-life batteries
using the EIS method at the cell level. In their experiments, five batteries with various
SoH values (between 100% and 50%) were chosen and tested using the EIS method. Based
on their findings, two parameters obtained by the EIS analysis can be used for the SoH
estimation and degradation analysis of second-life batteries; charge transfer and solid-
electrolyte interphase (SEI) layer resistances [65]. SEI layer growth was reported as one of
the major causes of capacity degradation in battery cells [74], which is mainly related to cal-
endar ageing and high levels of SoCs and temperature [79]. The charge-transfer resistance
parameter accounts for the charge-transfer resistance between electrodes affected by the
Butler–Volmer kinetics of the reaction [65]. In addition, for considering calendar-ageing
impacts in the experimental tests, it is recommended by Redondo-Iglesias et al. [79] that
the battery cell should not be tested using fast-charging profiles.

Shabir et al. [76] have worked on upgrading the EIS method to simplify the compu-
tational algorithms and decrease the processing time for battery testing. EIS is suggested
in that paper to be a promising and verified method to determine ageing effects in the
batteries. It has also been demonstrated that the EIS analysis and methodology can be used
as an alternative SoH prediction method for ECMs in modelling matters as it provides
information about the health of different components used inside the cell.
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Parameters such as temperature, initial cell charge, and time-dependent variables
substantially influence the outcomes of EIS analysis. As a result, it is imperative to establish
the intended application of the battery system prior to conducting tests in accordance with
the conditions of the envisioned application. This approach ensures optimal accuracy in
the modelling procedure and an SoH estimation that is relevant to the given application.

Zhang et al. [80] compared different conventional methods for estimating the SoH of a
second-life battery. The comparison was performed between incremental capacity analysis
(ICA), electrochemical-impedance spectroscopy (EIS), charge-discharge curve, and average
Frechet distance (AFD) methods for a 15P4S module. Based on the results provided in their
work, the highest SoH estimation accuracy among the mentioned methods belongs to the
AFD methodology. Jiang et al. [81] performed a comparison between the regression models
for of the estimating the SoH of retired LFP battery cells. The retired battery cells were
aged using six demanding profiles. The destructive SoH evaluation method was employed
to evaluate the loss of the lithium inventory and the loss of active material on the negative
electrode parameters. The maximum error of the regression models used for the prediction
of SoH was found to be up to 3%.

The SoH of second-life battery cells can also be predicted using machine-learning
methods, as recommended by Bhatt et al. [82]. In that study, the charging and discharging
curves and the first-life and second-life degradation experimental data of the battery cells
were used to train three machine-learning models: MLP (multi-layer prediction), LSTM
(long short-term memory network) and CNN (convolutional neural network). Various
cases with and without K-fold cross-validation were employed to train the models. The
minimum error was achieved in the K-fold cross-validation-trained models. In addition, the
maximum accuracy in predicting the SoH was obtained in the LSTM model trained using
the battery discharging profile. Another comparison among the non-destructive methods
for the SoH estimation of lithium battery cells was performed by Sarmah et al. [77]. They
extensively reviewed the literature and compared the accuracy of the most common SoH
estimation methods. Based on the results of their review, the average SoH prediction error
for the EIS method is below 2.1%, with the lowest error belonging to neural network models
(Table 3). The aforementioned methodologies are effective for state-of-health predictions at
the cell level; however, as second-life batteries are being used at the pack level, the total
state of health of the module or pack should be estimated while considering cell-to-cell and
module-to-module imbalances [83,84], the methodology of which has not been considered
yet in the literature for second-life battery packs.

Table 3. The SoH prediction methods’ error comparison (cell level) conducted by Sarmah et al. [77].

Method Real SoH (from Experiments) [%] Predicted SoH [%] Error [%]

Coulomb counting 63.85 69.78 <10
EIS 85 86.27 <2.1

Neural network 82 82.3 <0.5
Support vector machine 60.35 59.19 <2

Kalman filter 84.36 86.57 <5
Sliding-mode observer 90.13 90.261 <2.5

Fuzzy logic 88 91.625 1.4–9.2

The retired battery modules of RENAULT KANGOO were studied by Quinard et al. [85],
who pointed out that the second life of the battery begins when its capacity drops by 20%
compared with its initial capacity or when a 200% impedance increase is achieved. The
SoH, defined by capacity and impedance, is expressed as:

SoH = 100
Qm

Qnominal
(5)

SoH = 100(2 −
Zm

Znominal
) (6)
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The study focuses on a fast offline SoH estimation method based on experimental
data. For gathering the experimental data, the module voltage was analysed by applying
CC-CV charges. The non-linear regression was employed for curve fitting the experimental
capacity data using the equation provided below:

I(t) = Ae−Bt + C (7)

where B is the battery’s kinetic parameter during a constant voltage charge. It is reported
that the abovementioned methodology provides acceptable accuracy for SoH estimation in
first-life cells when the capacity fading is between 4% and 30%. However, the results of
the Quinard [85] study showed that the accuracy of this methodology for SoH prediction
in second-life cells is about 49%. The study demonstrated that the incremental capacity
analysis (ICA) SoH estimating method indicates acceptable SoH predictions at low C-
rates. Their assessment of the partial coulometric counter method for SoH prediction also
concluded that it can be counted as one of the efficient offline SoH estimation methodologies,
with an accuracy of more than 70%, and the tests are not time consuming. The comparison
results of their work are presented in Table 4.

Table 4. Comparison of the SoH methodologies [85].

Method R2
Average Absolute

Error [%]
Maximum Absolute

Error [%]
Estimated Test

Time [s]
Pack Estimation

Suitability

Phase CV 0.42 2.5 5.7 1050 −

ICA 0.60 1.8 5.1 3240 ++
Partial counter 0.69 1.6 5.1 300 +

The SoH estimation of Nissan Leaf second-life batteries using the ICA methodology
was also evaluated using experimental data by Braco et al. [86]. The required data for the
ICA was gained from CC charge experimental data with sampling at 1 s intervals. To define
the noise and IC relation, the charges were divided into 200 equal time sections. The IC
parameter was calculated using the equation below:

IC =

(

δQ

δV

)

n

=
Qn − Qn+1

Vn − Vn+1
(8)

For removing the noise, a 12-point moving-average filter was used, which is claimed
to be the best solution for providing the highest accuracy. MATLAB was used to identify
the peaks and valleys in the filtered IC data. The influence of three parameters on the ICA
of second-life batteries was considered: temperature, current, and degradation. The results
show that the error of this SoH estimation technique is below 1.5% when the temperature
and current are kept below 45 ◦C and C/2, respectively. Furthermore, employment of ICA
provides useful information about the unknown degradation history of the second-life cells.

The ICA and infrared (IR) methodologies were used by Attidekou et al. [87] to deter-
mine the real end-of-life of second-life Nissan Leaf batteries. During the degradation pro-
cess, the battery capacity, internal resistance, and temperature was logged every 50 cycles
using RTP tests and a thermal camera mounted inside the thermal chamber. To effectively
utilise the ICA method for high C-rates, it is necessary to employ filtering techniques
to obtain accurate and satisfactory shapes of the ICA peaks and valleys. Therefore, the
Savitsky–Golay filtering methodology was used by [87] to analyse the ICA results for high
C-rates. Furthermore, their study included the depiction of battery surface-temperature
variations over time as one of the indicators of ageing. The outcomes of their research
have substantiated the ability of the SoH estimation methods to deliver highly accurate
predictions for a battery’s next 100 cycles of life.

Pastor-Fernandez et al. [88] compared the accuracy of the EIS and incremental-capacity–
differential-voltage methods used for SoH prediction in the management of battery storage
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systems. The same experimental data was used in both models to evaluate their perfor-
mance and accuracy. Both techniques were shown to be suitable for SoH prediction in
BMSs, and the accuracy of both models was higher than 95%.

Drawing from the findings of recent research, it is advised that the assessment of
SoH of retired cells commence by conducting an EIS analysis on aged lithium-ion cells.
This analysis should involve a comparison of output parameters with those obtained from
the EIS analysis of new cells, thereby enabling an evaluation of the initial health of the
cells. Moreover, it is imperative to establish the demand profile linked to the application
of the storage system as a preliminary step. Subsequently, battery-ageing tests should be
undertaken in accordance with the conditions inherent to that specific demand profile.

According to the information gathered from previous research, the electrochemical-
impedance spectroscopy (EIS) method can offer dependable insights into the chemical and
physical state of retired cells. This reveals the effects of both calendar and cycling ageing
on the cells during their initial usage. Subsequently, ageing tests on the cells should be
conducted using an EIS testing module, with the aim of ageing the cell to either 60% or 40%
of its original capacity. Data should be recorded throughout this ageing process.

Following this step, an EIS model should be constructed to analyse the collected data
and assess the degradation of the cells. This model will then be employed to estimate
the SoH. To gauge the accuracy of the EIS method, its results can be compared to those
obtained from the extended Kalman filter method (a model-based approach). This com-
parison serves to evaluate the EKF method’s accuracy and assess any discrepancies in the
model’s outcomes.

The extended Kalman filter can also be integrated with the ECM, which is used to
simulate the behaviour of the battery pack. This integration aids in estimating the SoH
at both the individual cell and pack levels. While it is possible to directly couple the EIS
model with the ECM model for SoH estimation, integrating the EKF with the ECM model is
a simpler approach that results in a more robust model for the battery pack compared with
integrated EIS-ECM models. A summary of different SoH estimation methods is shown in
Figure 10.
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Figure 10. The SoH estimation methods [89].

Table 5 summarises the studies performed on the topic of second-life battery modelling.
The ECM is a prevalent choice, with different orders and adaptations, demonstrating its
versatility in capturing battery behaviour. In most cases, the ECM model is validated using
hybrid pulse-power characterization (HPPC) and EIS data collected in the lab.
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Table 5. The summary table for second-life battery modelling methodologies.

Authors Year Methodology
Modelling

Scale
Battery Model

Battery
Chemistry

Cell
Geometry

Hart et al. [60] 2014 ECM—second order Cell CALB 70 Ah LFP and NMC Prismatic

Abdel-Monem et al. [62] 2017 ECM—first order Cell
EIG 7 Ah,
LFP 18650
cylindrical

LFP
Pouch and
cylindrical

Locorotondo et al. [65] 2020
ECM—electrical

Randles-circuit model
Cell NMC 20 Ah NMC Pouch

Assunção et al. [53] 2016 ECM—second order Pack LFP 1.1 Ah LFP NA

Tong et al. [52] 2013 ECM—first order Pack TS-LFP40AHA LFP
Pouch (or
prismatic)

Uddin et al. [63] 2017
ECM—first order with
a bulk-thermal model

Cell 18650-type 3 Ah NCA Cylindrical

Tong et al. [64] 2017
ECM—first order

with EKF
Cell LFP Prismatic

Casals et al. [73] 2017 ECM-4RC Cell 25 Ah NMC Prismatic

Bhatt et al. [82] 2021 MLP, LSTM, and CNN Cell
lithium-ion

18650
LFP Cylindrical

Choi et al. [66] 2020 NA Cell
EIS-based ECM

models
(mini-review)

NA NA

Daniel Müller et al. [56] 2019 P2D Cell NA NA NA
Jianing Xu et al. [58] 2023 Simplified P2D Cell NA LFP NA

The introduction of machine-learning techniques (multilayer perceptron (MLP), long
short-term memory (LSTM), and convolutional neural network (CNN) [82]) indicates a
shift towards data-driven modelling approaches in recent years. However, the robustness
of such methodologies has only been assessed using LFP lithium-ion batteries, leaving
a gap in the literature in assessing the accuracy of SoH methodologies in batteries with
different chemistries. Battery chemistry and geometry play a crucial role in influencing the
choice of methodology, as each chemistry and cell geometry has its unique characteristics.

Moreover, it can be also inferred from Table 5 that both cell-level and pack-level mod-
elling are being explored, reflecting the significance of understanding battery performance
at various scales. Most of the models, however, are developed and validated using cell
data, where cell-to-cell and module-to-module variations in the second-life battery pack,
including various SoH values, are neglected in most studies.

Additionally, a trade-off between simulation time and accuracy or a multi-optimisation
procedure is required for defining the number of RCs in ECMs. Also, the integration of
various thermal models with ECMs for predicting the heat dissipation of the second-life
battery has not been studied in recent studies, which significantly affects the cooling-
system sizing, leading to dramatic impacts on economic parameters of the energy-storage
systems [90,91].

4. Experimental Analysis Methodologies

To properly understand and confirm the accuracy of the commonly used ECMs in
mathematically describing second-life batteries, it is important to conduct experimental
tests. These tests fall into different main categories based on their specific aims: rapid
capacity, characterisation, and degradation tests.

To rapidly test the battery capacity and measure the highest and lowest voltages
of retired batteries, various tools such as the Deutronic DBL1200HV-60 diagnostic and
conditioning system workshop tool (Deutronic Electronic Technology Co., Ltd., Shenzhen,
China) are available on the market [54]. While these tools offer a rapid overview of the
battery status, they do not reveal the true electrochemical state of the battery or estimate its
remaining useful life [92].
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4.1. Testing Scale

Batteries that have been taken out of electric vehicles (EVs) and are no longer in
use are accessible on the market either as individual modules or larger packs. Given
that assembling these retired battery cells into packs can be expensive, battery-powered
stationary applications have been constructed using retired modules/packs. To illustrate
this, Table 6 showcases the specific second-life battery modules/packs that are currently
available for purchase in the UK market.

Table 6. The second-life battery module/packs available in the UK market [54].

Module
Brand

Cell Manufacturer
Number of Cells

in a Module
Number of Modules

in a Pack
Module

Capacity [kWh]
Pack Capacity

[kWh]
Module or Pack

Availability Level

BMW i3
Samsung SDI 64 Ah 12 8 2.27 18.19 Both
Samsung SDI 94 Ah 12 8 3.34 26.72 Both

Samsung SDI
120 Ah 12 8 4.26 34.1 Both

Nissan Leaf - 1 24 1.33 32 Both
Tesla Model 3 2170 Tesla 4416 4 15 60 Both

Tesla model
S/X

Panasonic
NCR18650B 444 14 4.28 60 Both

Panasonic
NCR18650B 516 16 5 80 Both

Jaguar I-Pace LG Chem 12 36 2.08 74.88 Both

VW ID 4
SK Innova-

tion/LG Chem 24 9 5.68 51.2 Both

SK Innova-
tion/LG Chem 24 12 5.68 68.16 Both

Mitsubishi
Outlander LEV46 8 10 1.104 11.04 Both

When conducting experimental tests on second-life batteries at both the module and
pack levels, the maximum voltage and nominal C-rates of these batteries hold signifi-
cant importance [36,93,94]. These factors are crucial in ensuring that the battery pack’s
voltage aligns well with other components within the intended system. Consequently,
selecting the appropriate second-life module with the specific voltage and C-rate becomes
pivotal, and this is driven by the technical specifications of the electrical network and the
required capacity. The battery parameters for the models listed in Table 4 are visualised in
Figure 11 [54]. Notably, a substantial difference between the battery-pack voltage and the
consumer voltage can result in considerable energy losses via inverters and converters.
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Figure 11. The maximum current at 1C and voltages of the second-life modules presented in Table 4.
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The maximum voltage of the second-life modules also affects the testing-protocol
development in the laboratory. Some battery-cycler devices have poor accuracy when the
voltage is below a specified range Hence, it is important to verify the voltage range of the
testing equipment before acquiring second-life battery modules. Neglecting this step could
lead to unnecessarily obtaining new modules solely to raise the total voltage to align with
the testing equipment’s voltage criteria.

4.2. Characterisation Tests

HPPC tests have been performed to characterise the equivalent-circuit battery model
for second-life batteries [95]. HPPC current pulses are applied to the second-life battery
to obtain its voltage response in various SoCs in the laboratory [96]. After developing
the ECM of the proposed SLB, HPPC pulses are applied to the theoretical model as the
input current, and the voltage response is compared to the experimental values obtained in
the laboratory [97,98]. Following that, optimum values of the ECM parameters in various
SOCs are identified using fitting algorithms such as the Levenberg–Marquardt [99,100],
trust-region reflective [101,102], and genetic [103,104] algorithms to minimise the error
between the voltage response obtained by the model and the experiments. The overall
process of the ECM characterisation is presented in Figure 12.
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Figure 12. Characterisation of the ECM using HPPC experimental data.

The current pulses utilized during HPPC tests may vary based on the intended appli-
cation of the second-life battery. Consequently, it is necessary to characterise the ECM of the
second-life battery according to these variations. In the study performed by Hart et al. [60],
the HPPC tests were carried out along with EIS on a prismatic 70 Ah automotive Calb
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LiFePO4 cell to characterise the ECM, as demonstrated in Figure 13. The current pulse
employed in the HPPC tests is illustrated in Figure 14. These tests were conducted at
environmental temperatures of 10 ◦C and 30 ◦C. The characterisation of the ECM was un-
dertaken to evaluate the performance of second-life battery packs for microgrid application.
Notably, this study focused on characterising the second-life battery at the cell level.
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Figure 13. The ECM model parameters used by Hart et al. [60], the values of which were obtained
from experimental degradation analyses.
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Figure 14. The HPPC test current pulses used by Hart et al. [60] for characterising the SLB cell.

In another work, Muhammad et al. [105] applied HPPC current pulses to Nissan Leaf
battery cells that had been disassembled from different modules with varying SoHs. The
HPPC current pulses and the voltage response of the cells are shown in Figures 15a and 15b,
respectively. Figure 15 demonstrates that the voltage responses are not the same for cells
with different SoHs. In similar research carried out by Abdel Monem et al. [62] and
Muhammad et al. [106], different current profiles were applied to the second-life battery
at the cell level for the purpose of characterisation. These alternative current profiles are
depicted in Figures 16 and 17. The majority of the studies concerning the characterisation of
second-life batteries through HPPC testing have been conducted at the cell level. However,
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it is important to note that a significant portion of SLBs sourced from EVs are available on
the market as modules or packs. Disassembling these modules and packs can be expensive
and impractical. As a result, there is a notable gap in the existing literature regarding the
characterisation of SLBs at the module and pack levels, which needs further exploration.

 
(a) 

 
(b) 

Figure 15. The HPPC test (a) current pulses used by Muhammad et al. [105] and (b) voltage responses
of the SLB cells.
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Figure 16. The HPPC test current pulses applied to the SLB cell by Abdel Monem et al. [62].
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Figure 17. The HPPC test current pulses used by Muhammad et al. [106].

4.3. Degradation Tests

Degradation tests are performed to obtain the impact of degradation on the oper-
ating parameters of second-life batteries. The degradation can be categorised into two
mechanisms for second-life batteries: cycle ageing and calendar ageing. In this section,
the experimental methodologies discussed in the literature for the calendar ageing of
second-life batteries are presented.

4.3.1. Calendar-Ageing Tests

For calendar-ageing tests, the SLB cell/module/pack is placed in a thermal chamber
with a constant environmental temperature for a period of time [107]. Calendar ageing is an
important parameter for SLBs as they might be stored for a long time before they are in use
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again [107,108]. Swierczynski et al. [109] studied the calendar ageing of second-life batteries
under different conditions. LFP batteries were chosen due to their slow calendar-ageing
mechanism, making them a perfect candidate for second-life application, and were aged
using an accelerated calendar-ageing profile representative of four calendar years. The
batteries were stored at a high temperature and SoC for an accelerated calendar-ageing
test [109]. The results of their work also showed that LFP batteries are a suitable candidate
for use in residential and UPS applications due to their slow capacity degradation during
calendar ageing.

Uddin et al. [63] have stored the battery cells with different SoCs in a thermal chamber
for 550 days and degraded them at various environmental temperatures—10 ◦C, 25 ◦C and
45 ◦C—in order to study the impacts of calendar ageing on battery ageing parameters.

The process of calendar ageing in second-life batteries demands a substantial amount
of time dedicated to testing within a laboratory setting, as Timmermans et al. [110] have
pointed out. To address this, they applied Arrhenius and Tafel electrochemical equa-
tions [110] to forecast the lifetime of the second-life batteries as influenced by parameters
related to calendar ageing. The outcomes of their predictions are depicted in Figure 18.

ff
ff

tt

tt

ff
tt

tt

tt

ff
ff

tt

Figure 18. The lifetime prediction for SLBs using electrochemical equations [110].

Braco et al. [111] developed empirical-based equations for predicting how the SLBs’
resistance increment and capacity fade are affected by calendar ageing. In their work,
the SLB cells were stored at different temperatures and SoCs, and the results were used
to validate equations for predicting the SLB lifetime. The calendar-ageing tests were
conducted over 750 days [111].

4.3.2. Cycle-Ageing Tests

During cycle-ageing tests, SLBs undergo charging and discharging using current
profiles that mimic various applications. In most available studies, researchers employ
accelerated ageing profiles to simulate the cycle degradation of SLBs. This approach reduces
the testing duration in the laboratory. However, as also noted by Neubauer et al. [112], using
standard accelerated current profiles for cycle degradation tests does not present a realistic
scenario. In practice, these batteries experience degradation due to a range of random
current profiles during their primary usage, significantly influencing their performance in
the second-life cycle.

Swierczynski et al. [113] employed cycle-ageing current profiles derived from the loads
experienced by batteries within a photovoltaic (PV) power plant. In their work, 150 20Ah
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NMC cells were degraded to their second life using real EV profiles. They also considered
different environmental temperatures during the cycle-ageing tests and concluded that the
environmental temperature has a significant impact on the battery ageing trend. In their
study, the accelerated ageing profile was generated by scaling the ageing time down from
two years to one month due to the time restrictions of the project.

Uddin et al. [63] conducted cycle ageing on second-life batteries by discharging the
cells at rates of 0.4C, 0.8C, and 1.2C. These were carried out at depths of discharge (DoDs)
of 30% as well as 80%. In addition, the battery cells’ capacity fade and increase in internal
resistance were measured while they were discharged with a 1C current and pulsed current
was applied at different SoCs, respectively. The results of their cycle-ageing tests indicated
that the environment temperature considerably affected both parameters.

In the study performed by Martinez et al. [107], first-life batteries were degraded to
second-life levels in the laboratory (with WLTC loads). Fresh cells were degraded using a
WLTP standard driving-cycle profile. Cells with varying SoHs were categorised into two
homogenous and heterogeneous modules in a series configuration and tested by applying
the power-smoothing current profile of a real renewable application. The environmental
temperature of 35 ◦C was chosen to accelerate the ageing tests in the thermal chambers.
The battery-cell capacity fade and internal resistance increase were measured on a monthly
basis during the ageing tests. The results of their work show that the ageing profile during
the first life of the battery cells affects their second-life cycle ageing behaviour dramatically.

Vaidya et al. [114] degraded a plug-in hybrid electric vehicle (PHEV) battery pack to
its second life using Federal Urban Driving Schedule (FUDS) load profiles. The powertrain
of the proposed vehicle was modelled and simulated using the FUDS to obtain the voltage
and current applied to the battery pack during its first life. Then, a protocol was designed
to cycle-age the lithium-ion battery cells in the laboratory, considering the FUDS loads to
degrade the battery cells to the beginning of their second life (Figure 19). After cycling the
battery cells to their second life, the C/5-rate charging and discharging load was applied to
the batteries for degradation analysis during their second-life application.
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ttFigure 19. The battery-cell degradation test protocol designed by Vaidya et al. [114].
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Braco et al. [115] tested 10 fresh Nissan Leaf battery modules and 32 s-life Nissan Leaf
battery modules experimentally. The tests were performed considering three temperatures
in the thermal chambers—5 ◦C, 25 ◦C, and 45 ◦C—and three discharge rates: 0.5 C, 1 C, and
1.5 C. The results of their work show that the impact of the discharge current on the second-
life battery capacity is more significant at lower temperature than at higher temperatures.

In another similar work performed by Braco et al. [116], six second-life battery mod-
ules were chosen randomly from a second-life pack with unknown degradation history.
Accelerated cycling profile and RTP tests were applied to the cells every 25 cycles (see
Figure 19) at 25 ◦C. Charging and discharging were executed under CC-CV and CC condi-
tions, respectively. Their research employed two criteria to halt the experiments: capacity
fade of over 6% during 100 consecutive cycles and capacity dropping below 30% (Figure 20).
The outcomes revealed that the ageing threshold of Nissan Leaf second-life batteries with
varying SoH levels fell between SoH values of 60% and 70%. Before reaching this threshold,
the cells underwent 2033 equivalent full cycles. However, considering the accelerated age-
ing profile in the study, it can be inferred that the actual lifespan of Nissan Leaf second-life
batteries surpasses 2033 full equivalent cycles.
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Figure 20. The accelerated cycling profile and RTP tests used by Braco et al. [116].

Jiang et al. [81] utilised three distinct load profiles, accompanied by CC-CV charging
and discharging cycles, for the analysis of degradation in second-life LFP battery cells with a
nominal capacity of 60 Ah. As illustrated in Figure 21, the battery cells underwent charging
and discharging at rates of 2 C, 1.5 C, and 0.5 C for load profiles a, b, and c, respectively. An
additional difference between loads a and b was their resting time. Due to load c having
the lowest maximum current, this resulted in it having a broader SoC range, reflecting the
battery’s peak-shaving application. Furthermore, capacity-fade measurements were taken
at intervals of 2400 cycles, 600 cycles, and 60 cycles. The current applied to each cell per
cycle was 6 Ah, 21.46 Ah, and 134.4 Ah for load profiles a, b, and c, respectively.
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Figure 21. Three load profiles (a–c) used by Jiang et al. [81] for degradation analysis of the battery cells.

Table 7 underscores the multidimensional nature of the research concerning experi-
mental techniques utilised for the characterisation and degradation of second-life batteries.

The table illustrates that most studies involve testing at the cell level, with some
extending their investigations to module and pack levels. The battery packs usually consist
of a large number of modules and, in most cases, they have different SoHs for second-life
packs. This suggests that a comprehensive approach to understanding battery behaviour
across different hierarchical scales of the SLBs is a major gap in the literature.

Moreover, there are limited studies assessing the accuracy of the SoH techniques for
second-life batteries, which is a critical parameter for economic calculations and battery-
management systems. Furthermore, in most studies, the degradation analyses of second-life
batteries are performed while considering only a single environmental temperature, ne-
glecting the impact of temperature on the ageing of second-life batteries. Temperature and
current variations are both only examined together in HPPC or RTP tests for battery charac-
terisation, and they are not studied in degradation analyses due to time restrictions. In none
of the reviewed studies were degradation analyses performed considering both different
currents (c-rates) and temperatures; the analyses were only performed considering one of
the abovementioned operating parameters. Therefore, the developed mathematical model
is only valid for the assigned relevant temperature or c-rate, resulting in reduced flexibility
of the developed model. The table also highlights that assessing battery performance under
realistic usage scenarios could be further expanded. The inclusion of real profile testing
and realistic operational conditions make the results and conclusions more relevant for
practical battery usage.
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Table 7. The summary table for second-life battery experimental analysis methodologies. * is check mark.

Authors Year
Cell-Level

Test
Module-

Level Test
Pack-Level

Test
Real-

Profile Test
RTP Test EIS HPPC

Various
Temperatures

XRD
Battery

Chemistry
Cell

Geometry

Tong et al. [52] 2013 * LFP Prismatic
Hart et al. [60] 2014 * * * * LFP Prismatic
Neubauer et al. [112] 2015 *
Swierczynski et al. [113] 2016 * * * NMC NA
Swierczynski et al. [109] 2017 * * * * LFP NA
Uddin et al. [63] 2017 * * * NCA Cylindrical
Jiang et al. [81] 2018 * * LFP NA
Martinez-Laserna et al. [107] 2018 * * * * * NMC NA
Vaidya et al. [114] 2018 * * * NMC and LFP Cylindrical
Braco et al. [115] 2019 * * * LMO Prismatic
Quinard et al. [85] 2019 * * * LMO Prismatic
Salinas et al. [117] 2019 * NA Cylindrical
Attidekou et al. [87] 2020 * * LMO Prismatic
Braco et al. [116] 2020 * * LMO Prismatic
Braco et al. [14] 2021 * * * * LMO Prismatic
Braco et al. [86] 2021 * * * * LMO Prismatic
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5. Battery-Management Strategies

In the previous sections, the methodologies used for development of the battery model
with the ECM approach and the characterisation and validation routes were discussed. The
developed characterised ECM will be used and programmed into a microcontroller board
as a battery-management system to restrict the battery operating parameters to address
safety concerns and enhance the second-life batteries’ life span [118]. The block diagram in
Figure 22 demonstrates the route for designing and testing a BMS for second-life batteries
from cell-level testing to pack-level testing.

tt
tt

tt tt
tt

tt

 
tt

tt tt
tt

tt

tt

Figure 22. The second-life battery BMS design and testing-route flowchart.

The battery-management system is the central controller of the second-life battery
packs installed in the stationary energy-storage system [119]. In each battery module, there
some sensors installed to measure the cells’ temperature and voltage and to estimate the
current applied under various operating conditions [120]. The battery-management system
will use the measured sensor data from each module to estimate the state of charge and
state of health of the battery cells, modules, and packs during operation using characterized
ECM and SOH estimation algorithms that are programmed into the microcontroller board
(Figure 23) [120].
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Figure 23. Data communication between the BMS, actuators, and sensors inside the SLB pack [120].

The state-of-health estimation algorithm accuracy of the second-life battery packs
plays a key role as it enables the BMS to calculate the probability of reaching the thermal
runaway point in each battery module inside the pack [121]. The BMS also uses the SOH
data to balance the state of health in the battery pack at the module and pack level [119,121].
Since the modules installed in the second-life battery pack may come from different EV
battery packs, there might be inhomogeneities in terms of the module’s total voltage and
capacity in the second-life battery pack. The BMS can balance the SOH using the actuators
already existing in the EV’s modules for SOC balancing [118].

There are two general methods for SOC balancing in the battery packs: passive and
active balancing (Figure 24) [122]. In passive balancing, a resistance is installed in parallel
with each cell in the module. The ohmic resistance of that is chosen based on the initial
terminal resistance of each battery cell. In active balancing, a controlled swich or various
types of DC-to-DC converters are used for cell-to-cell and module-to-module balancing
of the battery cells/modules in a pack [123]. The active balancing-system actuators are
directly controlled by the BMS. The main advantage of using such a balancing system is
that the control strategy would be adaptable in various operating conditions, and it can be
modified and changed by the BMS [124]. Companies such as Brill Power (based in Oxford,
UK) [125] and Connected Energy [126] have developed such BMSs with an active balancing
system for SOC and SOH simultaneously for large second-life battery packs.

 

tt

tt
tt

tt
tt

tt

tt

tt

tt

tt

 
ttFigure 24. The passive (left) and active (right) balancing systems in the second-life battery packs [119].
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There are some SLBs available on the market such as the BMW i3 SLB modules,
which are equipped with a passive balancing circuit board for cell-to-cell balancing inside
the module [127]. Therefore, the BMS designed for managing such batteries should be
programmed to only perform the SOH balancing at the pack level (module-to-module
level) (Figure 25). However, for other modules like the Jaguar I-Pace, which does not come
with a balancing circuit attached to the module, the active balancing circuit can be designed
for these SLB modules [128].

tt

tt

 

tt

tt
tt ff

tt ff

tt
tt

tt
tt

tt

tt
tt tt

Figure 25. The cell balancing board attached to the BMW i3 SLB modules.

5.1. Passive Balancing Systems

Typically, a passive balancing system refers to a dissipative charge-equalisation system,
which connects a shunt resistor in parallel with each individual cell in a series-connection
battery module to self-adjust each cell’s voltage by bypassing the current for all cells [129].
Every cell in a battery module might be different, primarily in terms of its manufacturing
charge storage volume and internal resistance, along with its temperature variances across
the battery module, which differs with the ageing behaviour of each cell [130]. Conse-
quently, the number of charging or discharging cycles of some cells will be much greater
than for others, especially after serving a long life in the battery module [131]. This heteroge-
neousness contributes less interference in a parallel-connection battery module, where cells
tend to be self-balancing to obtain the same voltage value among all the cells. Although
cells in a parallel-connection module will be self-balanced, the related protected circuit
board still needs to prevent deep discharging and overheating. This is because cells will
continuously be charged at a higher internal resistance, leading to the dissipation of heat
as the current passes through this resistance. During this process, the battery module can
generate significant heat, potentially leading to a fire that will not cease until the cells are
completely drained. Therefore, the entire battery module should at least have a protection
circuit board [132].

Although the passive balancing system may not be essential when modules are con-
nected in parallel, in the series-connected cells/modules, the available total energy capacity
is limited by its weakest cell. Charging or discharging at maximum current should be
capped when the weakest cell is fully charged or discharged [133]. Otherwise, the het-
erogeneousness among the cells will trend towards overcharging or deep discharging,
ultimately reducing the cells’ lifespan. As shown in Figure 26, assuming that the maximum
energy capacity of cells B1, B2, and B3 is 3750 mAh, 3330 mAh, and 3000 mAh, respectively,
after a period of continuously charging in a series-connected circuit, all the cells reach the
same capacity of 3000 mAh. At this point, cell B3 is fully charged, while B2 and B3 are at
90% and 80% capacity, respectively. Continued charging beyond this point will cause the
weakest cell, B3, to be overcharged. After a long period, this eventually causes capacity
loss, premature cell degradation, and then failure of the entire battery module. Similarly,
the discharging process follows the same principle. This demonstrates how the weakest cell
limits the overall energy capacity of series-connected battery modules [133]. Consequently,
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a balancing system is critical for a series-connected battery module, which significantly
improves the battery module’s overall performance.

3000mAh
100%

3000mAh
90%

3000mAh
80%

4.2V

3.4V

2.8V

4.2V3.8V

2.8V
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2.8V

3750mAh 3330mAh 3000mAh
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tt

ff

𝑄௡௘௘ௗ  𝑄௖௨௥ ∆Q, ff𝑄௡௘௘ௗ 𝑄௖௨௥ ∆Q = 𝑄௡௘௘ௗ − 𝑄௖௨௥

Figure 26. The weakest cell limits the overall energy capacity of a series-connection battery module.

The conventional passive balancing system uses the simplest and most cost-effective
way to equalize the charging rate through each cell. For instance, Figure 27 shows a passive
balancing system that includes shunt resistors R1, R2, and Rn, which are connected in
parallel with their associated cells B1, B2, and Bn, respectively. The voltage balance can be
achieved among cells by bypassing the current [134]. A microcontroller (BMS) monitors the
voltage of each cell and compares it with a predefined threshold. This comparison is made
to control the associated switch to perform the balancing. As shown in Figure 27, charging
will be stopped when cell B1 reaches the predefined threshold. Then switch S1 is turned
on, allowing the discharging current of cell B1 to flow through R1. Charging will resume
once B1’s voltage falls to the minimum limit. However, this approach, which measures
the voltage on each cell, has its limitations, and it cannot guarantee that the cell reaches
100% energy capacity upon full charge, as the measured voltage is influenced by both the
internal resistance and the energy capacity [135,136].
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Figure 27. Passive balancing strategy through voltage measurement.

To address the issue of the cell not achieving 100% energy capacity upon reaching full
charge, a new method is proposed to identify the end-of-charge status through current
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detection, in which a microcontroller (BMS) compares the full quantity of charge, Qneed (that
each cell needs to be in a full-charge state with the current quantity of charge), with Qcur

(that each cell has been charged) to define ∆Q, which represents the difference between
Qneed and Qcur:

∆Q = Qneed − Qcur (9)

If ∆Q equals 0, the cell reaches a threshold point. Then it obtains a full-charge state
when the microcontroller (BMS) detects this threshold. This approach effectively avoids the
shortcomings of poor balancing effects arising from voltage measurement, thereby ensuring
an optimal passive balancing performance [136]. Another passive balancing system is also
demonstrated in Figure 28. As shown in this figure, a switched-shunt resistor is proposed
to prevent the battery cell from undergoing light overcharging. The MOSFETs Q1 and
Q2 operate sequentially in the cut-off region when cell B1 reaches a full charge. Thus,
cell B1 can be discharged through R1, R2, and R3, which prevents B1 from overcharging.
The two MOSFETs, Q1 and Q2, can rapidly respond to the voltage increase in cell B1,
allowing for direct control over the MOSFET. This straightforward control mechanism
effectively prevents light overcharging. The switched-shunt resistor has been widely used
in lithium-ion-battery applications [137]. The passive balancing system is relatively simple
and low cost, but it will generate heat when current flows through the resistance.

∆Q
ff

ff

tt
ff

ff
tt

tt tt

Figure 28. A switched-shunt-resistance circuit diagram.

5.2. Active Balancing Systems

The active balancing systems can be categorized into cell-to-cell, cell-to-pack and pack-
to-cell topologies as mentioned by Di Rienzo et al. [119]. For active cell-to-cell balancing,
the flyback, switched-capacitor, and buck-boost converters are mostly used to manage
the energy at the cell level. Among the abovementioned converters, switched-capacitor
and buck-boost converters have the lowest cost and the simplest circuits [119]. Although
Di Rienzo et al. [119] has introduced the most-used active cell balancing circuit architectures
for second-life batteries, it is not economical to reuse the lithium-ion batteries at the cell
level; also, most of the second-life modules available on the market are equipped with
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cell-level balancing circuits (for state-of-charge balancing at the cell level). Accordingly,
his recommended balancing-circuit architectures have been modified and reproduced
for the module-to-module concept, being presented for the first time in this paper, as
shown in Figure 29. The adjacent module-to-module balancing system is presented in
Figure 29a for N-series-connected second-life modules. As mentioned earlier, the DC-to-
DC converter shown in this balancing system can be a flyback, buck-boost, or switched-
capacitor convertor. Figure 29b,c indicate the topologies for direct module-to-module
balancing systems. In this method, the energy is moved directly from one module to
another. The efficiency of the introduced balancing systems is as yet unknown at the
module level, which represents a huge gap in the literature.

ffi

 
(a) 

Figure 29. Cont.
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(c) 

tt
Figure 29. Block diagram of the suggested topologies for an active balancing system at the module
level for second-life batteries. (a) Adjacent module-to-module, (b) direct parallel module-to-module,
and (c) direct-series module-to-module balancing topologies.
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6. Future Trends and Emerging Technologies

At the moment, since EVs with an NMC battery chemistry are abundant in Eu-
rope, most of the second-life projects are performed using NMC batteries. However,
further economic and technical assessments and research are needed for batteries with
other chemistries.

For mathematical modelling of the second-life batteries, most of the studies in the liter-
ature have used ECMs with 2RC and 3RC for predicting the battery parameters; however,
there is a huge gap in the literature in assessing the use of other simplified reduced-order
physical-based models such as P2D for second-life batteries. For online state-of-health
assessments of second-life batteries, there is a lack of studies on the use of AI techniques
for robust and quick state-of-health estimation. In addition, although non-destructive
methods, such as the ultrasonic technique, have been found to be efficient in SOC, SOH,
and temperature estimation in first-life batteries, their performance has not been evaluated
yet for second-life batteries.

Ageing predictions and management of second-life batteries are two of the main
challenges envisaged with the development of this technology for the market, which is
directly related to safety concerns about these batteries, as discussed by Li et al. [36].
Accordingly, more efficient SOX balancing strategies and management systems need to be
designed for second-life batteries individually in the future [36]. At the moment, most of
the applications of these batteries are concentrated at the small scale, such as in building
applications or small-scale distributed energy-generation systems. However, it is expected
that by increasing the number of these batteries in the near future, these applications will
expand to the large scale, like in renewable energy plants [36]. On the other hand, by adding
broader applications for second-life batteries, a decrease in the price of these batteries can
also be expected in the future, which would make these batteries more desirable than the
first-life ones economically [1].

There is also a lack of standardization in the use of second-life batteries [1]. These
batteries are being used in different sizes, states of health, and chemistries for various
purposes even when there is no justification and rules for using these [1].

In order to achieve better health management of second-life batteries, the first-life
ageing trend of these batteries should be tracked [138]. To address this issue, an innovative
cloud-connected battery-management system has been suggested by Baumann et al. [121,138].
The historical tracked data of the first life of the batteries can be used to help achieve better
and more accurate prediction of its second-life ageing behaviour [138].

7. Reusing and Recycling of SLBs

The recycling process of lithium-ion batteries is considered the greenest technology in
this aspect due to the existence of lower toxic metals [7]. There is a significant mismatch
between the number of the retired batteries in the future and the capacity of the recycling
facilities available in various countries [7]. The total profit estimate from recycling NMC
lithium-ion batteries is $7000/ton of wasted battery, assuming a 90% efficiency in the
recovery process [7].

The other challenge is the lack of existence of recycling facilities in the Western coun-
tries that have the largest market for EVs [7]. This leads to significant increases in the
recycling process costs since the batteries have to be transferred to Eastern Asian countries
after their end of life. There are some legislations applied by the European Parliament that
oblige the battery manufacturers to design and manufacture their batteries based on certain
standards, which makes the recycling process easier and less costly [7].

On the other hand, prolonging the service life of lithium-ion batteries through their
second-life applications provides two major benefits: reducing the initial battery cost and
providing positive impacts on the development of the electrification infrastructure [36]. Six
different second-life battery application scenarios have been also assessed by Li et al. [36] in
terms of ageing, sizing, balancing BMS, and thermal management-system impacts. Among
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all the applications, the impact of the balancing BMS was found to be at lowest for light
industrial and residential applications [36].

8. Conclusions

This study comprises a comprehensive review of mathematical modelling and ex-
perimental assessments concerning second-life batteries retired from EVs. The presence
of a well-established theoretical mathematical model for such batteries, substantiated
and defined through practical tests, holds crucial importance for the advancement of tai-
lored battery-management systems (BMS). The creation of a specialised BMS tailored to
second-life batteries stands as a potential solution to overcome challenges associated with
employing these batteries in stationary applications. The main conclusions drawn from
this review are as follows:

- Equivalent-circuit models employing 2RCs and 3RCs have gained significant traction
among researchers due to their notable accuracy in estimating the behaviour of lithium-
ion batteries during their second life.

- Given the lack of knowledge about the degradation history of second-life batteries
sourced from different EVs, EIS tests serve as valuable tools. These tests offer insights
into the condition of the SEI and diffusion layers within the batteries.

- Calendar-ageing mechanisms are of considerable importance for SLBs due to the
potential extended storage periods prior to their second life or their use in applications
such as backup systems, where they might remain unloaded for extended durations.

- Electrochemical models hold an advantage over empirical models in predicting cal-
endar ageing, as they avoid the lengthy laboratory testing that empirical models
typically demand.

- While accelerated ageing profiles are convenient for time efficiency in cycle-ageing tests
of SLBs, they often lack reliability and are not representative of real-world applications.

- Designing cycle-ageing test profiles based on the intended application of the SLB,
using synthetic load data relevant to that application, ensures more accurate and
meaningful testing.

- Artificial intelligence algorithms demonstrate reliability in predicting the fading pa-
rameters associated with SLBs’ cycle ageing. Implementing these algorithms offers
substantial time savings in comparison with traditional laboratory testing.

- Although characterisation and degradation tests are typically conducted at the cell
level for SLBs in the existing literature, the practical scenario involves these SLBs
being available on the market as modules and packs. The challenge arises from
disassembling these larger units being cost-prohibitive and time-consuming. This
presents a significant gap in both experimental testing and theoretical modelling at
the module and pack levels within the existing literature.

Conclusions of this nature not only contribute to advancements in comprehending the
behaviour of second-life batteries but also offer valuable guidance for the development of
efficient battery-management systems and strategies. By addressing the challenges posed
by unknown degradation histories, diverse applications, and complex ageing mechanisms,
such findings pave the way for more reliable and sustainable integration of second-life
batteries into various practical applications. Such studies yield profound implications
for optimising battery performance in real-world contexts, effectively bridging the gap
between scientific comprehension and practical implementation.
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Nomenclature

HPPC Hybrid pulse-power characterization
SOC State of charge
SoH State of health
CNN Convolutional neural network
MLP Multilayer perceptron
LSTM Long short-term memory
IC Incremental capacity
DoD Depth of discharge
EV Electric vehicle
ECM Equivalent-circuit model
EKF Extended Kalman filter
RC Resistance–capacitance
PV Photovoltaic
EOL End of life
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